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Abstract

This paper studies a two-dimensional cheap talk game with two senders and one receiver. The

senders possess the same information and sequentially send messages about that information.

In one-dimensional sequential message cheap talk games where the state space is unbounded,

the information is fully transmitted under the self-serving belief, as suggested by Krishna and

Morgan (2001b). However, this result depends crucially on the structure of the one-dimensional

model. It generally does not hold in two-dimensional models. We consider the extended self-

serving belief, which implies full information transmission even if the self-serving belief cannot

work. Then, we show that the necessary and sufficient condition for the existence of the fully

revealing equilibrium is that the senders have opposing-biased preferences.
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1 Introduction

This paper studies a cheap talk game between two senders and one receiver with a two-dimensional

unbounded state space. The senders share the same two-dimensional private information and

sequentially send messages to the receiver. That is, the second sender can observe what the first

sender sent before he/she chooses the message. Sequential communication with several experts

is often observable in our life; for example, seeking second opinions, a peer-review process and a

debate are categorized into this communication structure. In the paper, we consider whether full

information transmission is possible in this setup and, if it is, how and when we achieve it.

The results are as follows. First, we show that Krishna and Morgan’s (2001b) successful belief

system, self-serving belief, which supports a fully revealing equilibrium, an equilibrium where the

senders’ private information is completely transmitted, in one-dimensional unbounded state space

models does not work in the two-dimensional model. Their positive result crucially depends on the

structure of the one-dimensional models. Second, we suggest a new belief system, extended self-

serving belief, which supports a fully revealing equilibrium in the two-dimensional model. Finally,

we show that the necessary and sufficient condition for the existence of fully revealing equilibria is

that the senders’ preferences are opposing biased, that is, they are biased in dissimilar directions.

Therefore, we can conclude that the directions of preference biases remain important in the two-

dimensional environment.

It is well known that if the private information is one-dimensional and the state space is un-

bounded, then full information transmission could be an equilibrium outcome. Krishna and Morgan

(2001b) show that if the senders have opposing-biased preferences, then the receiver’s self-serving

belief supports a fully revealing equilibrium. By taking advantage of the conflicts between the

senders, the receiver can make each sender check whether the other sends true messages. Because

neither sender has an incentive to lie under the belief, full information transmission is realized as

an equilibrium outcome.

However, their useful belief generally does not work in multidimensional environments; that

is, one-dimensionality of the state space is necessary for the self-serving belief to work well. In

two-dimensional models, the two senders can compromise more easily than in one-dimensional

models even if the sender’s preferences are opposing biased. The self-serving belief system is fragile

in the case of such compromised deviations, and the deviations are omitted in one-dimensional

models. Consider, for example, discussion of the tax on alcohol. If the situation is represented

by a one-dimensional model, i.e., experts discuss only the total amount of taxes on alcohol, and

their preferences are opposing biased, then any compromise is impossible. However, if we consider
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the same problem in a two-dimensional model, i.e., the experts discuss taxes on both whiskey and

wine, then the experts who have opposing-biased preferences on the total amount of taxes could

compromise. If the experts agreed with the low tax on wine, they would reach a compromise in

terms of a lower wine tax and a higher whiskey tax than the socially optimal levels. One-dimensional

models exclude such compromised deviations.

It is also well known that multidimensional cheap talk games have positive results on infor-

mation transmission. Battaglini (2002) constructs a useful belief system that supports a fully

revealing equilibrium. However, his belief system is fragile in the case of sequential communication;

if messages are sequential, then his positive result can hold only in the special case. Basically,

sequential cases are more difficult than simultaneous cases because of the sequential rationality of

the second sender. Moreover, multidimensional models require us to check a number of possible

strategies. The literature does not tell us whether full information transmission is possible in mul-

tidimensional sequential message models. To pursue the question, this paper extends Krishna and

Morgan’s (2001b) results to a two-dimensional model.

This paper is structured as follows. In the next subsection, we discuss the related literature.

Section 2 defines a two-dimensional sequential message cheap talk game model. In Section 3, we

retest the result of Krishna and Morgan (2001b) in the two-dimensional model. We develop a new

belief system that works well in the two-dimensional case, and characterize fully revealing equilibria

in Section 4. We discuss extensions in Section 5, and conclude the paper in Section 6.

1.1 Related literature

Crawford and Sobel (1982) study a one-dimensional cheap talk game with one sender and one

receiver. Their result is that the degree of information transmission depends on the difference be-

tween the sender’s and the receiver’s preferences and, in particular, they show that full information

transmission is impossible unless both players’ preferences coincide. Following this study, several

research streams that consider full information transmission in cheap talk games have developed.

The research regarding multiple-sender models is one such stream.

Gilligan and Krehbiel (1989) define the one-dimensional bounded state space, [0, 1], and analyze

the situation where the two senders send messages simultaneously in the context of legislation.

Krishna and Morgan (2001a) reexamine this problem and show that full information transmission

is possible unless the conflict between the players is large. On the other hand, Krishna and Morgan

(2001b) analyze the situation where the experts send messages sequentially. Because they also define

the one-dimensional bounded state space, [0, 1], they conclude that full information transmission
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is impossible. However, if the state space is defined as the real line, then the self-serving belief

supports a fully revealing equilibrium.1

Battaglini (2002) defines a two-dimensional unbounded state space, R2, and analyzes simul-

taneous communication processes. He suggests a belief system that supports a fully revealing

equilibrium. Under his belief system, the receiver makes each sender report only one element

of the two-dimensional private information; for example, one sender sends a message about the x-

coordinate of the private information, and the other sender sends a message about the y-coordinate.

By aggregating both messages, the receiver acquires the true information. Battaglini (2002) shows

that fully revealing equilibria exist unless the senders’ preferences are biased in exactly the same

direction. Therefore, he concludes that the important factor for full information transmission is

not the degree of conflicts and the bias directions, but the multidimensionality itself.2 Ambrus and

Takahashi (2008) consider the same situation in bounded state space and point out that Battaglini’s

full revelation result depends crucially on the unboundedness of the type space. Furthermore, they

show the necessary and sufficient condition for full information revelation for any state space.3 Re-

cently, Kawai (2013) extends the sufficiency part of the main result of this paper to an environment

with more general preferences.4

The paper is different from the above literature in terms of the dimensionality of the state

space, communication process, and the properties of belief systems. First, the paper is an ex-

tension of Krishna and Morgan’s (2001b) one-dimensional unbounded state space model into the

two-dimensional environment, and it suggests a new belief system. The extended self-serving be-

lief is more restricted than the original in order to prevent the compromised deviations mentioned

above. Second, this paper is also an extension of Battaglini’s (2002) simultaneous-communication

model into a sequential-communication model. The extended self-serving belief is different from

Battaglini’s (2002) belief system in the sense that the receiver makes the senders send direct mes-

sages, and compares them to obtain true information. Finally, this paper and Kawai (2013) study

multidimensional models with sequential communication, but the extended self-serving belief is a

complement to Kawai’s (2013) belief system in terms of its applicability. That is, Kawai’s (2013)

belief system is suitable for environments where the receiver is free to choose any action inde-

1All of the above papers as well as this paper assume that experts are perfectly informed players. Austen-Smith
(1993b) analyzes the situation where the experts are imperfectly informed.

2Chakraborty and Harbaugh (2010) also claim the importance of the multidimensionality by showing the existence
of informative equilibria with a state-independent preference sender.

3Austen-Smith (1993a), Battaglini (2004), Levy and Razin (2007), and Ambrus and Lu (2014) study imperfectly
informed experts models in multidimensional environments.

4Zapechelnyuk (2013), another recent work in this research stream, studies information extraction from multiple
experts who could collude in advices.
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pendent of the senders’ messages. On the other hand, the extended self-serving belief is suitable

for environments where the receiver’s alternatives are constrained to “recommendations” by the

senders.

2 The Model

We consider the following two-dimensional cheap talk game with sequential communication. There

are three players: two senders and a receiver. We call the senders expert 1 and expert 2, and

the receiver the decision-maker.5 The experts share private information about the state, which is

denoted by a two-dimensional vector. Let Θ ≡ R2 be the state space, and let θ = (θ1, θ2) ∈ Θ be

the realized value of the state, which is known to both experts but unknown to the decision-maker.

This is the experts’ private information.6 Note that the state space is unbounded. Let F (·) be a

differentiable prior probability distribution function on Θ with density f(·) such that f(θ) > 0 for

any θ ∈ Θ. Let Si ≡ Θ be expert i’s message space, for i = 1, 2. Note that each expert uses direct

messages and the message sent by expert i is denoted by si = (s1i , s
2
i ) ∈ Si.

Let Y ≡ R2 be the decision-maker’s action set and let y = (y1, y2) be the action chosen by the

decision-maker. In this model, all players’ preferences are different. We describe these differences

by parameters x0, x1, and x2; let xi = (x1i , x
2
i ) ∈ R2 be the expert i’s preference bias, and the

decision-maker’s preference bias, x0, is normalized to be (0, 0). Thus, xi is a measure of how expert

i’s preference is biased compared with that of the decision-maker. We assume that x1 ̸= x2 and

x1, x2 ̸= (0, 0).

The decision-maker and the experts have von Neumann Morgenstern utility functions, UD :

Y ×Θ → R, UEi : Y ×Θ× R2 → R, respectively, defined as follows:7

UD(y, θ) ≡ −
2∑

j=1

(yj − θj)2, (1)

UEi(y, θ, xi) ≡ −
2∑

j=1

(yj − (θj + xji ))
2. (2)

From (1) and (2), when the value of θ is given, the decision-maker’s and the experts’ ideal points

that represent the most preferable actions for each player are θ, θ+x1 and θ+x2, respectively. For

5As a matter of convention, we treat the experts as male and the decision-maker as female throughout this paper.
6We assume that both experts are perfectly informed players.
7We restrict our attention to the quadratic-loss utility case. This is the usual assumption in the literature on

cheap talk games; see Crawford and Sobel (1982), Gilligan and Krehbiel (1989), Krishna and Morgan (2001a,b) and
Battaglini (2002).
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simplicity, we denote θ+xi by Oi. We assume that all information except θ is common knowledge.

It is worth pointing out that the experts’ messages do not directly affect all players’ payoffs.

Thus, this is a cheap talk game. In addition, because we focus on the direct message game with

quadratic-loss utility functions, the experts’ messages are interpreted as recommendations of the

action that the decision-maker should choose.

The timing of the game is as follows. First, nature chooses state θ according to the distribution

function F (·), and then both experts observe this value correctly. Second, expert 1 sends a message

s1, which is dependent on θ. Third, expert 2 sends a message s2, which is dependent on both θ

and s1. Finally, the decision-maker chooses an action y after observing both messages s1 and s2.

Expert 1’s pure strategy, µ1 : Θ → S1, specifies a message s1 that is sent in the state θ. Expert

2’s pure strategy, µ2 : Θ × S1 → S2, specifies a message s2 that he sends in the state θ after

observing expert 1’s message s1. The decision-maker’s pure strategy, y : S1 × S2 → Y , specifies

an action y that is chosen after observing both messages s1 and s2. Then, the decision-maker’s

posterior belief is denoted by P : S1 × S2 → ∆(Θ). This is a function from a pair of messages to a

probability distribution on Θ.

The solution concept is the perfect Bayesian equilibrium(hereafter PBE) and we focus on pure

strategy equilibria.

Definition 1 A quadruple (µ∗
1, µ

∗
2, y

∗;P∗) is a PBE if it satisfies the following conditions:

(i) for any θ ∈ Θ, µ∗
1(θ) ∈ arg max

s1∈S1

UE1(y∗(s1, µ
∗
2(θ, s1)), θ, x1);

(ii) for any θ ∈ Θ and s1 ∈ S1, µ
∗
2(θ, s1) ∈ arg max

s2∈S2

UE2(y∗(s1, s2), θ, x2);

(iii) for any s1 ∈ S1 and s2 ∈ S2, y
∗(s1, s2) ∈ argmax

y′∈Y
EP∗(θ|s1,s2)[U

D(y′, θ)];

(iv) P∗ is derived using µ∗
1 and µ∗

2 by Bayes’s rule whenever it is possible. Otherwise, P∗ is any

probability distribution on Θ.

Because we consider the quadratic-loss utility functions as defined in (1) and (2), expert i’s

indifference curve is a circle, the center of which is expert i’s ideal point, Oi, and the radius of this

circle is the norm of the preference bias, ||xi||, where || · || is the Euclidian norm. We use Ii(θ) to

denote expert i’s indifference curve through action y = θ, Ri(θ) to denote the upper contour set of
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θ + x1

θ + x2

θ

y1

y2

Figure 1: Both experts’ indifference curves through y = θ

Ii(θ), and Pi(θ) to denote the strict upper contour set of Ii(θ). In other words:

Ii(θ) ≡ {y ∈ R2 | UEi(y, θ, xi) = UEi(θ, θ, xi)}, (3)

Ri(θ) ≡ {y ∈ R2 | UEi(y, θ, xi) ≥ UEi(θ, θ, xi)}, (4)

Pi(θ) ≡ {y ∈ R2 | UEi(y, θ, xi) > UEi(θ, θ, xi)}. (5)

By the definition of Ii(θ), I1(θ) and I2(θ) intersect at least at y = θ, as in Figure 1.

The two-expert situations are divided into the following two cases: like biases and opposing

biases.

Definition 2 The experts have like biases if x1 · x2 > 0. Otherwise, they have opposing biases;

that is, x1 · x2 ≤ 0.

In like-biases cases, the correlation coefficient of the vectors x1 and x2 are positive, so we can

interpret this to mean that the experts’ preferences are biased in similar directions. Geometrically,

it is equivalent to 0◦ ≤ γ < 90◦, where γ is the interior angle of x1 and x2. On the other hand,

the correlation coefficient is nonpositive in opposing-biases cases, so we can say that the experts’

preferences are biased in dissimilar directions. Geometrically, this is equivalent to 90◦ ≤ γ ≤ 180◦.

In the following analysis, we focus on a fully revealing equilibrium where the private information

is fully transmitted. We define a fully revealing equilibrium as follows.

Definition 3 A PBE (µ∗
1, µ

∗
2, y

∗;P∗) is a fully revealing equilibrium if y∗(µ∗
1(θ), µ

∗
2(θ, µ

∗
1(θ))) = θ

holds for any θ ∈ Θ.
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3 Limitations of Self-serving Belief

In this section, we review the self-serving belief defined by Krishna and Morgan (2001b), and show

that a straightforward application of the belief into the two-dimensional model does not support

fully revealing equilibria.

3.1 One-dimensional unbounded state space model

We briefly review the one-dimensional unbounded state space model of Krishna and Morgan (2001b)

in this subsection. Hence, we suppose that Θ, Y ≡ R and xi ∈ R for i = 1, 2 throughout this

subsection. In the one-dimensional model, the opposing-biases cases are defined, without loss of

generality, by the cases such that x1 < 0 and x2 > 0. In addition, we define the decision-maker and

the experts’ one-dimensional quadratic-loss utility functions, uD : Y ×Θ → R, uEi : Y ×Θ×R → R,

respectively, by uD(y, θ) = −(y− θ)2 and uEi(y, θ, xi) = −(y− (θ+ xi))
2. The self-serving belief is

defined as follows.

Definition 4 Self-serving belief (Krishna and Morgan (2001b))

(i) A message s2 from expert 2 is self-serving if the adoption of the recommendation by expert 2

is strictly better for expert 2 than the adoption of the recommendation by expert 1, given that

expert 1 sends the true messages. In other words,

s2 is self-serving if uE2(s2, s1, x2) > uE2(s1, s1, x2). (6)

(ii) The decision-maker has the self-serving belief if the posterior belief P(·|s1, s2) satisfies the

following conditions; for any s1 ∈ S1 and s2 ∈ S2:

s2 is self-serving ⇒ P(s1|s1, s2) = 1, (7)

s2 is not self-serving ⇒ P(s2|s1, s2) = 1. (8)

That is, under the self-serving belief, the decision-maker believes expert 1’s message for certain

if expert 2’s message is self-serving. Otherwise, she believes expert 2’s message for certain. This

belief system works when the experts have opposing biases.

Proposition 1 (Krishna and Morgan (2001b) footnote 9.)

Consider the one-dimensional unbounded state space model. Suppose that the experts have opposing

biases. Then, there exists a fully revealing equilibrium supported by the self-serving equilibrium.
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θ + x1 θ

y y

θ θ + x2
θ + 2x2

Figure 2: Expert 1 sends the true message.

θ + x1 θ s′ s′ + 2x2

y y

s′ θ θ + x2s′ + 2x2

Figure 3: Expert 1 sends a false message s′(< θ).

Proof. See Krishna and Morgan (2001b). ■
The intuition behind the result is described in Figure 2 and 3. Consider an opposing-biases case

and suppose that expert 1 sends the true message. Given the message, expert 2 cannot improve

his utility by lying because such messages are always self-serving; that is, the decision-maker never

believes them. The bold region of Figure 2 is the set of actions that expert 2 can induce. Thus, by

sending the true message, expert 1 can induce the first-best action y = θ.

Next, suppose that expert 1 sends a false message, s′, which is smaller than, but not far from,

θ as described in Figure 3. Given the message s′, expert 2 can always send a credible message,

s2 = s′ + 2x2. This induces the action y = s′ + 2x2, and it is better for expert 2 than y = θ.

Because both experts have opposing-biased preferences, y = s′ +2x2 is worse for expert 1 than the

first-best action, y = θ. Similarly, if expert 1 sends a false message s′′, which is larger than, but not

far from, θ, then expert 2 agrees with the message and it is induced. However, it is worse for expert

1 than the first-best action. Thus, expert 1 has no incentive to lie. That is, the decision-maker can

make each expert check whether the other expert’s message is true, given the self-serving belief.

On the equilibrium path, the self-serving belief is consistent with Bayes’ rule. Therefore, in the

one-dimensional opposing-biases case, the self-serving belief supports a fully revealing equilibrium.

9



O1

θ

O2

O′

2

s1

I2(θ)

I1(θ)

I2(s1)

Figure 4: The self-serving belief.

O2 O′

2

I2(θ)
I2(s1)

L+

y∗

Figure 5: Lemma 1

3.2 Two-dimensional unbounded state space model

Now, we return to the two-dimensional model defined in Section 2, and apply the self-serving belief

into the two-dimensional opposing-biases cases, as shown in Figure 4. Ii(s1) represents expert i’s

indifference curve that the decision-maker faces when she believes that expert 1’s message s1 is

true, and Pi(s1) and Ri(s1) are the strict and the weak upper contour sets of Ii(s1), respectively.

We denote s1 + xi by O′
i. By using the notation, the self-serving belief is described as follows; for

any s1 ∈ S1 and s2 ∈ S2:

s2 ∈ P2(s1) ⇒ P(s1|s1, s2) = 1, (9)

s2 /∈ P2(s1) ⇒ P(s2|s1, s2) = 1. (10)

Under the self-serving belief, if expert 1 sends s1 ̸= θ, then, by inducing the action y ∈

P2(θ)\P2(s1), expert 2 will be better off than if y = θ is realized. The shaded region in Fig-

ure 4 is the set of such actions. If O2 /∈ P2(s1), then expert 2’s best response is trivial; he sends

s2 = O2. If O2 ∈ P2(s1), then expert 2 cannot induce his ideal point O2 under the self-serving

belief. The next lemma characterizes the most preferred action that expert 2 can induce when

O2 ∈ P2(s1). By this lemma, we can insist that expert 2’s best response exists on the half-line

through O′
2 and O2, the initial point of which is O′

2.

Lemma 1 Fix s1 such that O2 ∈ P2(s1), and let y∗ be the closest point on I2(s1) to expert 2’s ideal

point O2. Then, y∗ is the intersection of I2(s1) and the half-line through O′
2 and O2, the initial

point of which is O′
2.

Proof. All proofs are in Appendix A. ■
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O1

θ

O2

O′

2s1 I2(s1)

s∗

Figure 6: Expert 1’s profitable deviation

Consider opposing-biases cases with 90◦ ≤ γ < 180◦. In these cases, P1(θ) ∩ P2(θ), a set of

actions that both experts strictly prefer to action y = θ, is nonempty. Hence, the experts can induce

an action in P1(θ) ∩ P2(θ) by deviating from truth-telling because the self-serving belief is fragile

in the face of such compromised deviations, which is explained as follows. Suppose that expert 1

sends message s1 such that
−→
θs1 is parallel to the line through O1 and O2, and ||θ − s1|| = ϵ > 0

where ϵ is small enough, as shown in Figure 6. Then, O′
2 exists on the line through O1 and O2. By

Lemma 1, expert 2’s best response is sending s2 = s∗, the intersection of I2(s1) and the half-line

O′
2O2, starting at O′

2. Under the self-serving belief, it is not self-serving, so action y = s∗ is induced.

However, because the deviation is so small, action y = s∗ exists in P1(θ)∩P2(θ) as shown in Figure

6. Because the experts strictly prefer the induced action to y = θ, expert 1 has an incentive to

deviate from truth-telling and expert 2 endorses expert 1’s deviation. Therefore, we can say that,

in the two-dimensional model, the self-serving belief cannot support fully revealing equilibria. The

next proposition shows that the self-serving belief can support fully revealing equilibria only when

the experts have perfectly opposing biases.

Proposition 2 Consider the two-dimensional unbounded state space model. Then, there exists a

fully revealing equilibrium supported by the self-serving belief if and only if P1(θ) ∩ P2(θ) = ∅.

Geometrically, the necessary and sufficient condition is that the experts’ indifference curves I1(θ)

and I2(θ) circumscribe at y = θ; that is, γ = 180◦, the perfectly opposing-biases case. In the two-

dimensional model, there are other “intermediate” opposing-biases cases such that 90◦ ≤ γ < 180◦.

The self-serving belief is fragile to these intermediate cases. However, because of the structure of

the models, we only focus on the perfectly like-biases and the perfectly opposing-biases cases in one-

dimensional models. In other words, the intermediate cases are ignored, so the self-serving belief

system is sufficient to support fully revealing equilibria in one-dimensional models. Therefore,
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we can conclude that the positive result in the one-dimensional model crucially depends on the

one-dimensional structure.

This raises a new question as to whether fully revealing equilibria exist when P1(θ)∩P2(θ) ̸= ∅.

We find the following positive result in the literature.

Proposition 3 (Battaglini (2002) p.1395)

Consider the two-dimensional unbounded state space model. Then, there exists a fully revealing

equilibrium supported by Battaglini’s belief system if and only if x1 · x2 = 0.

Proof. See Battaglini (2002). ■
The case of x1 · x2 = 0 is equivalent to γ = 90◦ and it is an opposing-biases case. However, this

belief system is also fragile in the face of the other intermediate cases.

In summary so far, we have already known that there exists a fully revealing equilibrium if

the experts have either (i) perfectly opposing biases, i.e., γ = 180◦, or (ii) orthogonal biases,

i.e., γ = 90◦. On the other hand, the literature does not answer the question of whether there

exists a fully revealing equilibrium when the experts have (i) intermediate opposing biases, i.e.,

90◦ < γ < 180◦ or (ii) like biases, i.e., 0◦ ≤ γ < 90◦.

4 Extended Self-serving Belief and Fully Revealing Equilibria

This section studies the open questions discussed in the last paragraph. First, we suggest a new

belief system, extended self-serving belief, and show that there exists a fully revealing equilibrium

supported by the new belief system if the experts have opposing biases. Second, we show that there

exist no fully revealing equilibria in the like-biases cases. That is, the existence of opposing-biased

preferences is the necessary and sufficient condition for full information transmission.

Let us introduce some notation. Given expert 1’s message s1, let ŝ1 be the other intersection

of I1(s1) and I2(s1). Consider two tangents of I1(s1) at s1 and ŝ1, and let Os1 be the intersection

of the tangents. Let T (s1) be the interior of the cone, the vertex of which is Os1 and the sides are

the tangents of I1(s1) at s1 and ŝ1. The extended self-serving belief is defined as follows.

Definition 5 Extended self-serving belief.8

The decision-maker has the extended self-serving belief if the posterior belief P(·|s1, s2) satisfies the

8I am very grateful to Nozomu Muto for suggesting this criterion. Originally, I used a stronger criterion in the
sense that more conditions are needed to construct a fully revealing equilibrium.
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O′
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1

s1

ŝ1
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Figure 7: Extended self-serving belief

O1

θ

O2

O′

2s1 I2(s1)

s∗

Figure 8: Preventing the deviation

following conditions; for any s1 ∈ S1 and s2 ∈ S2:

s2 ∈ P2(s1) ∪ T (s1) ⇒ P(s1|s1, s2) = 1, (11)

s2 /∈ P2(s1) ∪ T (s1) ⇒ P(s2|s1, s2) = 1. (12)

Expert 2’s messages in the shaded region or on the bold line in Figure 7 are credible under the

extended self-serving belief. It restricts the set of credible messages for expert 2 more than the

original. Under the extended self-serving belief, the decision-maker believes expert 1’s message for

certain if expert 2’s message is s2 ∈ P2(s1) ∪ T (s1). Otherwise, she believes expert 2’s message for

certain.

The extended self-serving belief is interpreted as follows.9 We define s∗1(s1, s2) ≡ argmins∈{s1,ŝ1} ||s2−

s||, given s1 and s2. We assume that there is a decision-maker who believes one or the other of

experts’ messages for certain. First, the decision-maker believes s2 if s1 = s2, that is, expert 2

endorses expert 1. In addition, the decision-maker believes s2 = ŝ1 for certain; given the first point,

expert 2 has no incentive to send s2 = ŝ1 if s1 = θ, i.e., expert 1 tells the truth. Because expert 2

is indifferent between y = s1 and y = ŝ1 as long as s1 = θ, the decision-maker knows that expert

2 has no incentive to send s2 = ŝ if expert 1 tell the truth. Hence, the decision-maker can infer

that expert 1 misreports when she observes s2 = ŝ1, and never believes such messages by expert

1. Then, the decision-maker believes s2 ̸= s1, ŝ1 if and only if (i) it is not self-serving and (ii) the

direction that expert 2 would like the decision-maker to move from s1 or ŝ1 never benefits expert

1. In other words, expert 2 must show that (i) his message is not self-serving as in the original, and

(ii) the direction of a deviation from s∗1,
−−→
s∗1s2, is “not like” the direction in which expert 1 would

9I really appreciate the advice of an anonymous referee who suggested this interpretation.
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Figure 9: Examples of successful deviations

like the decision-maker to move from s∗1,
−−→
s∗1O

′
1, i.e., the interior angle of

−−→
s∗1s2 between

−−→
s∗1O

′
1 must

be obtuse. The latter means that the vector
−−→
s∗1s2 never passes through P1(s1); the complement of

T (s1) is the set of such messages by expert 2. Therefore, the decision-maker believes s2 if and only

if s2 /∈ P (s1) ∪ T (s1).

We return to the problematic deviation for the self-serving belief mentioned in the last section,

and demonstrate how the extended self-serving belief prevents it. Under the self-serving belief,

expert 1 can induce action y = s∗ in Figure 8 because, given s1, expert 2’s best response, s2 = s∗,

is credible for the decision-maker. However, under the extended self-serving belief, s2 is not credible.

Given s1, expert 2’s best response is either s2 = s1 or s2 = ŝ1. The decision-maker adopts expert

2’s message, but the induced action y = s1 or ŝ1 is worse than y = θ for expert 1. Therefore, the

extended self-serving belief can prevent the deviation.

We can show that, as long as the experts have opposing biases, any deviation from the truth

never improves expert 1’s payoff under the extended self-serving belief, so he has no incentive to

deviate from s1 = θ.10 Expert 2’s best response given s1 = θ is the endorsement of it, s2 = θ. Hence,

at any state, the experts’ private information is completely transmitted to the decision-maker. That

is, we have a positive answer to the first question proposed in the last section; there also exists a

fully revealing equilibrium in the intermediate opposing-biases cases, i.e., 90◦ < γ < 180◦.

It is worthwhile to mention why it is insufficient to exclude only P1(s1) ∪ P2(s1). It may seem

that when the experts have opposing biases, excluding P1(s1) is sufficient to prevent deviations that

10The formal proof is in the Appendix A.
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induce better actions for expert 1. However, this is not correct; unboundedness of the excluded

region is necessary. Consider the following belief system; the decision-maker believes a message s2

if and only if s2 /∈ P1(s1) ∪ P2(s1). This belief system does not always support a fully revealing

equilibrium even if the experts have opposing biases.

If ||x1|| > ||x2||, then expert 1 can deviate such that P1(s1) includes P2(θ), as shown in Figure

9-(a). We face the same problem that the original self-serving belief faces; given such s1, expert 2’s

best response is s2 = s′, which is on I1(s1), and the decision-maker believes it. Therefore, it is a

profitable deviation for expert 1. Moreover, if ||x1|| ≤ ||x2|| but ||x2|| − ||x1|| is not large enough,

then the same problem also occurs; expert 1 can induce action y = s′ ∈ P1(θ), as shown in Figure

9-(b). In addition to opposing biases, we need ||x2 − x1|| ≥ 2||x1|| to support a fully revealing

equilibrium under this belief system.11 As long as the excluded region is bounded in the direction

of O′
1, we face the same problem, so we need additional conditions regarding the norms of the

preference biases for supporting fully revealing equilibria. Thus, we have to exclude the unbounded

region, like T (s1), to avoid such constraints.

Next, we consider the second question; do fully revealing equilibria exist in the like-biases cases,

i.e., 0◦ ≤ γ < 90◦? Our answer is negative; there exists no fully revealing equilibrium in like-biases

cases. The last part of this section demonstrates why full information transmission is impossible

when the experts have like biases. Consider the line segment connecting θ with O2, and call it

the line of endorsement at θ.12 As Lemma 1 shows, at any state θ, if expert 1 deviates to some

s1 ̸= θ that lies on the line of endorsement at θ, then expert 2 always endorses the deviation; that

is, s2 = s1 is the unique best responses of expert 2. In other words, by deviating in the direction

of expert 2’s preference bias, x2, expert 1 can force expert 2 to endorse the deviation. The next

11The formal proof is available upon request.
12I thank the anonymous referee who suggested this notion.

15



O2

O1

θ

θ̂

I2(θ)

I2(θ
′)

θ′

Figure 11: Impossibility in like-biases cases

lemma gives an equivalent condition for bias relations.

Lemma 2 Consider the two-dimensional unbounded state space model. Then, the experts have

opposing biases if and only if for any state θ, the intersection of P1(θ) and the line of endorsement

at θ is empty.13

The impossibility of full information transmission in like-biases cases comes from the nonempti-

ness of the intersection of P1(θ) and the line of endorsement. That is, expert 1 is strictly better

off by deviating to some point on the intersection of P1(θ) and the line of endorsement, and no

belief system ever prevents such deviations. Intuitively, consider a like-biases case in Figure 11. We

suppose, in contrast, that there exists a fully revealing equilibrium in this case. If expert 1 pretends

to be state θ′ when the true state is θ, then endorsing this deviation is the unique best response of

expert 2 because θ′ lies in the line of endorsement at θ. Hence, action y = θ′ is induced, and expert

1 strictly prefers it to y = θ, which is a contradiction. Under any belief system, expert 2 never

contests such deviations by expert 1, so we can conclude that there exists no fully revealing equi-

librium in like-biases cases. Therefore, fully revealing equilibria in the two-dimensional unbounded

state space model are characterized as follows.

13As long as we consider the quadratic-loss utility case, the same property holds for the line segment connecting
O2 and θ̂, which is the other intersection of I1(θ) and I2(θ).
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Proposition 4 Consider the two-dimensional unbounded state space model. Then, there exists a

fully revealing equilibrium if and only if the experts have opposing biases.

As shown in Lemma 2, the condition that the experts have opposing biases is equivalent to the

condition that the intersection of P1(θ) and the line of endorsement at θ is empty, and this emptiness

is crucial for the existence of fully revealing equilibria, as shown in Proposition 4. That is, properties

of the intersection of P1(θ) and the line of endorsement at θ provides an exact analogy with

the definitions of Krishna and Morgan’s (2001b) one-dimensional opposing/like biases. Therefore,

this point makes clear the connection between one-dimensional and two-dimensional models, even

though these are often discussed as somehow fundamentally different models in the literature.

5 Discussion and Extensions

5.1 Collusion

Sequential communication can be regarded as a situation where experts in a committee can collude

before advising a decision-maker. That is, expert 2 can choose whether to collude with expert

1 before sending his recommendation. Hence, the fully revealing equilibrium supported by the

extended self-serving belief can be said to robust with respect to this kind of collusion.

Zapechelnyuk (2013) studies collusion among experts in a committee under the framework of

cheap talk games; there are n experts who share the same multidimensional private information,

and the experts engage in bargaining before giving recommendations to a decision-maker. Instead

of specifying the bargaining procedure, Zapechelnyuk (2013) imposes axioms that any bargaining

solution must satisfy. In his environment, the decision-maker can elicit full information if and only

if the outcome induced by a fully revealing equilibrium is not Pareto dominated by the experts in

the committee.

This paper is a complement of Zapechelnyuk (2013). As Proposition 4 has shown, in our

environment, the decision-maker can obtain full information even if the outcome induced by a fully

revealing equilibrium is Pareto dominated by the experts as long as they have opposing biases. The

discrepancy of the results in the two papers comes from the differences in how the experts deviate.

Zapechelnyuk (2013) mainly focuses on opting-out deviations. That is, if expert i ∈ {1, 2, ..., n}

deviates, then the other n− 1 experts have chances to react this deviation. However, in our setup,

expert 2 has a chance to react to expert 1’s deviations, but expert 1 cannot react to expert 2’s

deviations. In other words, Zapechelnyuk (2013) focuses on the scenario of full opting-out in the

sense that all experts can react to the other’s deviations. On the other hand, our bargaining
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procedure is a partial opting-out in the sense that only one of the experts can react to the other’s

deviations.14

5.2 N(> 2)-dimensional models.

The results can be extended toN(> 2)-dimensional models as long as quadratic-loss utility functions

are assumed. We can easily define the N -dimensional extended self-serving belief in a similar way

to the two-dimensional model. The construction of the fully revealing equilibrium depends on the

distance between the experts’ true indifference curves and the illusionary ones. The assumption of

two-dimensionality is not essential for this construction. Thus, we can obtain the same results in

N -dimensional unbounded state space models. Moreover, because the decision-maker can elicit true

information by taking advantage of the conflict between two experts, this means that two experts

are sufficient for the existence of a fully revealing equilibrium even in N -dimensional models.

5.3 n(> 2)-expert models

We consider a situation where there are n(> 2) experts who share the same two-dimensional private

information, and send messages sequentially. The sufficiency of Proposition 4 can be easily extended

to the n-expert model. Like and opposing biases in the n-expert model are defined as follows. The

experts are said to have like biases if xi ·xj > 0 for any experts i and j. Otherwise, the experts are

said to have opposing biases. If the experts have opposing biases, then we can find a fully revealing

equilibrium that is essentially equivalent to that in the two-expert model. That is, because there

exists a pair of experts i and j such that xi · xj ≤ 0, the decision-maker can elicit full information

by caring only about the messages from experts i and j under the extended self-serving belief, and

ignoring the other messages.

However, an extension of the necessary part of Proposition 4 is not straightforward. The

difficulty is specifying how each expert reacts to the predecessors’ behaviors without specifying the

decision-maker’s belief. This problem can be avoided in the two-expert model by considering a

deviation along the line of endorsement; expert 2 endorses such a deviation whatever the decision-

maker’s belief is. However, in the n-expert model, because of the sequential rationality of the

subsequent experts, finding a deviation that every expert endorses without specifying the decision-

maker’s belief is nontrivial, even if the experts have like biases. We have the following partial

extension. Let Ki(θ, θ
′) ≡ {y ∈ Y |UEi(y, θ, xi) ≥ UEi(θ′, θ, xi)}.

14I thank Andriy Zapechelnyuk for conversations about it.
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Proposition 5 Consider the three-expert model, and suppose that for any θ ∈ Θ, there exists θ′( ̸=

θ) ∈ Θ such that (i) θ′ lies on the line of endorsement of expert 3 at θ and (ii) K2(θ, θ
′) ⊂ P1(θ).

Then, there exists no fully revealing equilibrium.

Intuitively, the conditions in Proposition 5 mean that (i) each bias has the similar magnitude, and

(ii) the interior angles of the biases are sufficiently small as shown in Figure 12. Hence, if the

conditions are satisfied, then the experts have like biases.15 Two open questions remain. First, we

conjecture that a fully revealing equilibrium never exists in the general n-expert model under the

similar conditions in Proposition 5. However, we need nontrivial modifications on the conditions

and the proof. Second, even in the three-expert model, we do not have the answer when the experts

are like biases but the conditions in Proposition 5 are not satisfied.

5.4 Mixed strategies

The necessary condition for the existence of fully revealing equilibrium does not change even if we

adopt mixed strategies. Ambrus and Takahashi (2008) show that in simultaneous communication,

allowing mixed strategies by the experts could generate a fully revealing equilibrium when there is

no fully revealing equilibrium in pure strategies. That is, stochastic outcomes generated by mixed

strategies prevent the experts from deviations. However, this logic does not hold in sequential

communication because the decision problem that expert 2 faces is equivalent to that in pure

strategies even if mixed strategies are allowed. In other words, expert 2’s best response could

depend on each realized message in sequential communication even if expert 1 undertakes mixed

strategies. Because expert 2 is not forced to face stochastic outcomes in his decision making, the

same logic used in pure strategies can be applied for showing the necessary condition. There exists

no fully revealing equilibrium as long as the experts have like biases, even if the players are allowed

15The formal proof is in the Appendix C.
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to undertake mixed strategies.16

5.5 Noisy information

In this subsection, we consider a noisy-information environment by modifying the baseline model as

follows. We assume that each expert could not observe the correct state with positive probability.

Let σi ∈ Σ ≡ {θ, ϕ} represent expert i’s private observation about the state; that is, expert i

observes nothing (i.e., σi = ϕ) with probability ϵi ∈ [0, 1), and he observes the correct state (i.e.,

σi = θ) with probability 1 − ϵi. We say that expert i is perfectly informed if ϵi = 0; that is, the

perfectly informed expert always observes the correct state, as in the baseline model. Because

the experts’ strategies depend on their observations, the definition of fully revealing equilibrium is

modified as follows; we say that a PBE (µ∗
1, µ

∗
2, y

∗;P∗
1 ,P∗

2 ,P∗) is a fully revealing equilibrium if for

any θ ∈ Θ and σ1, σ2 ∈ Σ:

y∗(µ∗
1(σ1), µ

∗
2(σ2, µ

∗
1(σ1))) =

 θ if (σ1, σ2) ̸= (ϕ, ϕ)

E[θ] otherwise
(13)

where P∗
i represents expert i’s posterior belief, and E[θ] represents the expectation of the state

given the prior probability distribution. Except for this modification, the setup is identical to that

in the baseline model. The following proposition summarizes the results.

Proposition 6 Consider the two-dimensional unbounded state space model with noisy observa-

tions.

(i) If x1 ·x2 < 0, ϵ1 = 0 and ϵ2 is sufficiently small, then there exists a fully revealing equilibrium.

(ii) If ϵ1 > 0, then there exists no fully revealing equilibrium.

The first part of Proposition 6 means that the fully revealing equilibrium supported by the

extended self-serving belief is robust to noise such that only expert 2 observes nothing with small

probability. However, the second part of this proposition says that once expert 1 becomes im-

perfectly informed, there never exists a fully revealing equilibrium even though the probability of

expert 1 observing nothing is sufficiently small. In other words, independent of the decision-maker’s

belief, expert 2 has an incentive to deviate when expert 1 observes nothing.

There are two remarks. First, the perfect informativeness of expert 1 is the necessary condition

for the existence of fully revealing equilibrium in this noisy environment. That is, the small im-

16The formal statement is in the Appendix C.
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perfectness of expert 2 is irrelevant to full information transmission as long as expert 1 is perfectly

informed, but the imperfectness of expert 1 is fatal. This difference arises because of sequential

communication. The case of (σ1, σ2) = (θ, ϕ) is essentially equivalent to the case of (σ1, σ2) = (θ, θ)

in the sense that expert 2 can learn the true state by observing expert 1’s message in a fully reveal-

ing equilibrium. In other words, in a fully revealing equilibrium, expert 2 has an additional chance

to learn the true state before sending a message. Because we can guarantee the “truth-telling” of

expert 1 as long as the imperfectness of expert 2 is sufficiently small, the fully revealing result in

the case of (σ1, σ2) = (θ, θ) can be replicated in the case of (σ1, σ2) = (θ, ϕ). However, the case of

(σ1, σ2) = (ϕ, θ) is different from above cases in the sense of informativeness of the experts; that is,

expert 1 has no chance to learn the true state if he observes nothing. Because, in this scenario, the

decision-maker then has to completely rely on the expert 2’s message for learning the true state, the

decision-maker cannot prevent expert 2 from “lying” whatever belief she has, like the one-sender

model. This is the reason why the perfect informativeness of expert 1 is crucial to the result.

Second, this fully revealing equilibrium is sensitive to other types of noise. For example, suppose

that the observation of expert i is given by σi ≡ θ+ ϵi, where ϵi follows a normal distribution with

zero mean, and ϵ1 and ϵ2 are independent.17 In this environment, disagreements among reports

could happen with positive probability even if the experts truthfully report their own observations.

Therefore, because the extended self-serving belief is discontinuous in messages, this belief system

does not work well under such an information structure.

5.6 General preferences

The sufficiency part of Proposition 4 is extended by Kawai (2013) to an environment with more

general preferences. Kawai (2013) assumes that (i) for any θ ∈ Θ, U i is continuous and quasi-

concave in y ∈ Y , and single-peaked with ideal point Oi, (ii) for any θ ∈ Θ, y ∈ Y and z ∈ RN ,

U i(y, θ, xi) = U i(y + z, θ + z, xi) holds, (iii) for any θ ∈ Θ, there exists β(θ) > 1 such that

UE2(θ, θ, x2) = UE2(θ+ β(θ)x2, θ, x2) holds, and (iv) for any θ ∈ Θ, U i(θ+ γxi + γ̃x̃i, θ) is strictly

decreasing in |γ̃| where x̃i is a unit vector such that xi · x̃i = 0. For easy reference, preferences

satisfying the above assumptions are called as general preferences.

Let us introduce additional notation. Let Hi(y; θ) be a hyperplane that is tangent to Ii(θ) at

action y. Define H+
i (θ) ≡ {y ∈ Y |(y − θ) · xi > 0} and H−

i (θ) ≡ {y ∈ Y |(y − θ) · xi < 0}, which

are the half-spaces divided by hyperplane Hi(θ; θ). Let g(s1, s2) be the foot of perpendicular from

17This noisy information structure is studied by Battaglini (2004) and Ambrus and Lu (2014).
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s2 to hyperplane H2(s1; s1). Define s̃1 ≡ s1 + βx2.
18 Kawai (2013) proposes the following belief

system; for easy reference, we call the belief system the open self-serving belief.

Definition 6 Open self-serving belief. (Kawai (2013))

The decision-maker has the open self-serving belief if the posterior belief P(·|s1, s2) satisfies the

following conditions; for any s1 ∈ S1 and s2 ∈ S2:

s2 /∈ H+
2 (s1) ∩H−

2 (s̃1) ⇒ P(s2|s1, s2) = 1 (14)

s2 ∈ H+
2 (s1) ∩H−

2 (s̃1) ⇒ P(g(s1, s2)|s1, s2) = 1 (15)

Proposition 7 (Theorem 1 of Kawai (2013))

Consider the multidimensional unbounded state space model with general preferences. Then, there

exists a fully revealing equilibrium supported by the open self-serving belief if and only if x1 ·x2 ≤ 0.

The main difference between the extended and open self-serving beliefs is the response to self-

serving messages. Under the extended self-serving belief, the decision-maker believes that expert 1’s

message is correct for certain. Under the open self-serving belief, on the other hand, the decision-

maker may believe neither message; she believes that state θ = g(s1, s2) realizes for certain. In

other words, if expert 2 wants to rebut expert 1, then he must send non-self-serving messages under

the extended self-serving belief. However, expert 2 can rebut even by sending self-serving messages

under the open self-serving belief. As a result, expert 1’s inducible action set is restricted to the line

segment connecting θ and θ + βx2, and then x1 · x2 ≤ 0 guarantees full information transmission.

Because of the above difference, the extended and open self-serving beliefs have different appli-

cability. We assume the quadratic-loss preferences for easy comparison, and consider a situation

where the decision-maker’s alternatives could be constrained depending on the experts’ messages,

like legislative processes.19 The open self-serving belief is appropriate in environments where the

decision-maker is free to undertake any action irrelevant to the messages.20 However, if the decision-

maker is constrained such that she has to adopt either one of the “recommendations” by the experts,

then the extended self-serving belief seems more appropriate; the open self-serving belief is no longer

valid because the response to self-serving messages violates that constraint. Therefore, we can con-

clude that the extended self-serving belief is a complement to the open self-serving belief in terms

18By assumption (ii), β(θ′) = β(θ′′) for any θ′, θ′′ ∈ Θ. Then, it is simply represented by β.
19In the literature of legislature under asymmetric information, see Gilligan and Krehbiel (1989) and Krishna and

Morgan (2001a), legislative rules without any restriction are called open rules, and restricted rules such that the
legislature has to adopt one of the recommended proposals by the experts are called modified rules.

20It is obvious that the extended self-serving belief is also valid in those environments.

22



of its applicability.

Although Kawai (2013) generalizes the sufficiency part of Proposition 4, the generalization of

the necessary part is limited. Because his statement depends on the particular belief system, the

possibility of full information transmission under different belief system is still an open question.

5.7 Bounded state space

The unboundedness of the state space is also a crucial assumption for our results. If we consider a

bounded type space, the extended self-serving belief may not imply a fully revealing equilibrium.

This is consistent with Krishna and Morgan (2001b) and Ambrus and Takahashi (2008).

6 Conclusion

In this paper, we have studied a sequential cheap talk game with two-dimensional unbounded state

space. We have two main findings; first, the self-serving belief suggested by Krishna and Morgan

(2001b) generally does not support fully revealing equilibria in the two-dimensional environment; it

works if and only if the experts have perfectly opposing biases. In the two-dimensional environment,

there exist outcomes where both experts are strictly better off than the first-best outcome even if

the experts’ preferences are biased in “not like” directions. The self-serving belief is fragile in the

face of such “intermediate” opposing-biases cases.

Second, we characterize the necessary and sufficient condition for the existence of fully revealing

equilibria in the two-dimensional environment, which is that the experts have opposing biases. As

the intersection of P1(θ) and the line of endorsement at θ is empty in opposing-biases cases, an

appropriate belief system can support fully revealing equilibria. We suggest the extended self-

serving belief, under which the decision-maker believes expert 2’s messages if and only if (i) it is

not self-serving, and (ii) it “contests” expert 1’s message, that is, the direction in which expert

2 recommends the decision-maker to move never benefits expert 1. On the other hand, if the

experts have like biases, then the intersection of P1(θ) and the line of endorsement at θ is not

empty. Expert 1’s deviation to some point on the intersection makes expert 1 strictly better off,

and expert 2 always endorses such deviations under any belief system. Therefore, full information

transmission is impossible.
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Appendix A: Proofs

First, we define the following notation. For any a, b ∈ Y , let L(a, b) ≡ {y ∈ Y |∃α ∈ R s.t −→ay = α
−→
ab},

L+(a, b) ≡ {y ∈ Y |∃α > 0 s.t −→ay = α
−→
ab}, and L̄(a, b) ≡ {y ∈ Y |∃α ∈ [0, 1] s.t −→ay = α

−→
ab}.

Geometrically, L(a, b) represents the line ab, L+(a, b) represents the half-line ab, the initial point

of which is a, and L̄(a, b) represents the segment ab. Let θ̂ be the other intersection of I1(θ) and

I2(θ).

Proof of Lemma 1

Without loss of generality, assume that O2 = (0, 0) and O′
2 = (a, 0), where 0 < a < ||x2||. Take an

arbitrary point (b, c) ∈ I2(s1). Then:

(b− a)2 + c2 = ||x2||2 ⇐⇒ b2 + c2 = ||x2||2 − a2 + 2ab. (A.1)

If we let f ≡ b2 + c2, then f is the square of the distance from O2 to the point (b, c). Thus,

f = ||x2||2 − a2 + 2ab, and f is minimized when b is minimized. By construction, b = a − ||x2||.

Because
−−−→
O′

2O2 = (−a, 0) and
−−−→
O′

2y
∗ = (−||x2||, 0),

−−−→
O′

2y
∗ = ||x2||

a

−−−→
O′

2O2. Then, y∗ ∈ L+(O′
2, O2).

Therefore, y∗ ∈ L+(O′
2, O2) ∩ I2(s1). That is, the closest point y∗ is the intersection of I2(s1) and

the half-line through O′
2 and O2, the initial point of which is O′

2. ■

Proof of Proposition 2

(Sufficiency) Suppose that P1(θ) ∩ P2(θ) = ∅. In other words, R1(θ) ∩ R2(θ) = {θ} and neither

R1(θ) ⊂ R2(θ) nor R2(θ) ⊂ R1(θ). If s1 = θ, then, from the self-serving belief system, expert

2’s best response is s2 = θ. If s1 ̸= θ, then P2(θ)\P2(s1) ̸= ∅. Because P1(θ) ∩ P2(θ) = ∅ from

the hypothesis, y ∈ P2(θ) and y /∈ P1(θ) for all y ∈ P2(θ)\P2(s1). Hence, for such action y,

UE1(θ, θ, x1) ≥ UE1(y, θ, x1). From the self-serving belief system, if s1 ̸= θ, then expert 2 induces

the action y ∈ P2(θ)\P2(s1). Because expert 1 cannot strictly improve his utility by sending false

messages, he has no incentive to lie. Therefore, on the equilibrium path, both experts send messages

involving the truth, and the self-serving belief is consistent with Bayes’ rule. This is a fully revealing

equilibrium.

(Necessity) By definition, I1(θ) ∩ I2(θ) ̸= ∅. Then, there are the following three cases: (i) I1(θ) ∩

I2(θ) = {θ, θ̂}, where θ̂ ̸= θ, (ii) I1(θ) ∩ I2(θ) = {θ} and either R1(θ) ⊂ R2(θ) or R2(θ) ⊂ R1(θ),

and (iii) I1(θ) ∩ I2(θ) = {θ} and neither R1(θ) ⊂ R2(θ) nor R2(θ) ⊂ R1(θ).

(i) case: Let A ≡ {y ∈ Y |L(O1, O2) ∩ R1(θ) ∩ R2(θ)} and D ≡ diam A. Because the set A is
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compact, ∃a, b ∈ A such that ||a− b|| = D.

Case 1: O1 /∈ P2(θ). Suppose that expert 1 sends the message s1 ̸= θ such that
−→
θs1 = ϵ

−−−→
O1O2,

where ϵ is such that 0 < ||ϵ
−−−→
O1O2|| < D and O2 ∈ P2(s1). Then,

−−−→
O2O

′
2 = ϵ

−−−→
O1O2. By Lemma 1,

y∗ ∈ L(O1, O2). Without loss of generality, assume that a = y∗−ϵ
−−−→
O1O2. Suppose, in contrast,

that y∗ /∈ P1(θ). That is ||O1 − y∗|| ≥ ||x1||. Because O1 /∈ P2(θ), ||x1|| = ||O1 − a|| + D.

Hence:

||x1|| ≤ ||O1 − y∗|| ≤ ||O1 − a||+ ||a− y∗|| = ||O1 − a||+ ||ϵ−−−→O1O2||

< ||O1 − a||+D = ||x1||, a contradiction. (A.2)

Then, y∗ ∈ P1(θ) must hold. That is, expert 1 has an incentive to lie. Therefore, the

self-serving belief does not support fully revealing equilibria in this case.

Case 2: O1 ∈ P2(θ). Without loss of generality, assume that ||O1 − a|| ≤ ||O1 − b||. Consider

the following message s1 such that
−→
θs1 = β

−−−→
O1O2, where β = ||O1 − a||. From Lemma 1,

y∗ ∈ L(O1, O2). Note that this is the most preferred action for expert 2 that he can induce.

By construction, y∗ = a−−−→
O1a = O1. That is, expert 1 can induce the most preferred action

by sending this message. Then, under the self-serving belief, he has an incentive to lie.

(ii) case: By constructing the same deviation in case (i), expert 1 can become strictly better off.

That is, the self-serving belief cannot support fully revealing equilibria.

Therefore, if there exists a fully revealing equilibrium supported by the self-serving belief, then this

must be case (iii). In other words, it should be P1(θ) ∩ P2(θ) = ∅. ■
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Proof of Lemma 2

Note that L̄(θ,O2) represents the line of endorsement at θ.

(Necessity) Suppose, in contrast, that there exists θ ∈ Θ such that P1(θ) ∩ L̄(θ,O2) ̸= ∅ when the

experts have opposing biases. That is, there exists y ∈ P1(θ) ∩ L̄(θ,O2). As y ∈ P1(θ), x1 ·
−→
θy > 0.

In addition, because y ∈ L̄(θ,O2) and the experts have opposing biases, there exists α ∈ (0, 1] such

that
−→
θy = αx2. However, as the experts have opposing biases, x1 · x2 ≤ 0. That is, x1 · ( 1α

−→
θy) ≤ 0,

or still x1 ·
−→
θy ≤ 0, a contradiction. Therefore, for any state θ, P1(θ) ∩ L̄(θ,O2) = ∅.

(Sufficiency) Fix θ ∈ Θ and y ∈ L̄(θ,O2) arbitrarily. As P1(θ) ∩ L̄(θ,O2) = ∅, y /∈ P1(θ). So,

x1 ·
−→
θy ≤ 0. In addition, because y ∈ L̄(θ,O2), there exists α ∈ [0, 1] such that

−→
θy = αx2. Hence,

x1 · (αx2) ≤ 0 implies x1 · x2 ≤ 0. That is, it is an opposing-biases case. ■

Proof of Proposition 4

(Sufficiency) We show the if the experts have opposing biases, then there exists a fully revealing

equilibrium supported by the extended self-serving belief. The proof is constructive; first, we specify

expert 2’s best response for several s1 under the extended self-serving belief. Then, we show that

expert 1 has no incentive to lie given expert 2’s best response. We define the following notation: let

l(s1) and l(ŝ1) be the tangents of I1(s1) at y = s1 and ŝ1, respectively.
21 Then, given that s1 ̸= θ:

sA ∈ arg min
y∈I2(s1)

||O2 − y|| (A.3)

sB ∈ arg min
y∈l(s1)∪l(ŝ1)

||O2 − y|| (A.4)

sC ∈ arg min
y∈I2(s1)\T (s1)

||O2 − y|| (A.5)

Note that sA and sB are uniquely determined as long as s1 ̸= θ. If there are multiple sC , then we

arbitrarily choose one of them.

Similarly to the original case, if s1 = θ, then expert 2 cannot improve his own payoff by lying.

Then suppose that s1 ̸= θ, and divide all cases into the following five cases: (i) O2 /∈ P2(s1)∪T (s1),

(ii) O2 ∈ P2(s1) and sA /∈ P2(s1) ∪ T (s1), (iii) O2 ∈ P2(s1) and sA ∈ P2(s1) ∪ T (s1), (iv) O2 /∈

P2(s1) and O2 ∈ T (s1) and sB /∈ P2(s1) ∪ T (s1), and (v) O2 /∈ P2(s1) and O2 ∈ T (s1) and

sB ∈ P2(s1) ∪ T (s1).
22

In Case (i), expert 2’s best response is s2 = O2 and action y = O2 is induced because O2 /∈

P1(s1) ∪ T (s1). In Case (ii), because O2 ∈ P2(s1), expert 2 cannot induce action y = O2, and

21Geometrically, sB is the foot of the perpendicular from O2 to either l(s1) or l(ŝ1).
22An example of each case is represented in the figures of Appendix B.
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the most preferable action that expert 2 can induce lies on I2(s1). Given s1, s2 = sA is the best

response, and action y = sA is induced because sA /∈ P2(s1) ∪ T (s1). Similarly, as O2 ∈ P2(s1),

the most preferred action for expert 2 that he can induce exists on I2(s1) in Case (iii). If he sends

s2 = sA, then action y = s1 is induced because sA ∈ P2(s1) ∪ T (s1). By construction, if expert 2

sends s2 = sC , then it is always believed and either action y = s1 or y = ŝ1 is induced. Hence,

s2 = sC is weakly better than s2 = sA; it is expert 2’s best response.

In Cases (iv) and (v), expert 2’s best responses are characterized by the following lemmas.

Lemma 3 Suppose that O2 /∈ P2(s1), O2 ∈ T (s1) and sB /∈ P2(s1) ∪ T (s1). Then, expert 2’s best

response is s2 = sB.

Proof of Lemma 3. Because O2 ∈ T (s1), expert 2 cannot induce action y = O2, given s1. Then,

expert 2’s best response is either s2 = sA, sB or sC .

Case (a): sA ∈ P2(s1) ∪ T (s1). It is obvious that if sA = sC , then sA /∈ T (s1). Then, sA ̸= sC

in Case (a). If s2 = sA, then action y = s1 is induced. As s1 ∈ I2(s1)\T (s1), s2 = sC is

weakly better for expert 2 than is s2 = sA. Hence, we compare ||O2 − sB|| with ||O2 − sC ||.

Without loss of generality, assume that sB ∈ l(s1) and sC = s1. Because
−−−→
sBO2 · −−→sBs1 = 0,

||O2 − sB||2 + ||sB − s1||2 = ||O2 − s1||2. That is, ||O2 − sB|| ≤ ||O2 − s1||. Therefore, s2 = sB is a

best response.

Case (b): sA /∈ P2(s1)∪T (s1). As sA = sC , it is sufficient to compare ||O2 − sA|| and ||O2 − sB||.

Without loss of generality, assume that sB ∈ l(s1). Because sA /∈ T (s1) and O2 ∈ T (s1), O2 and

sA are separated by l(s1). Then, there exists a point q ∈ Y such that {q} = l(s1) ∩ L̄(O2, sA). Let

p ∈ Y be the point such that p ∈ l(s1) and
−−→psA · −→py = 0 for any y ∈ l(s1). Note that −−→sBq ·

−−−→
sBO2 = 0

and −→pq · −−→psA = 0. Then, ||O2 − q||2 = ||O2 − sB||2 + ||sB − q||2, ||q − sA||2 = ||p− sA||2 + ||p− q||2,
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and ||O2 − sA|| = ||O2 − q||+ ||q − sA||. Then:

||O2 − sA||2 > ||O2 − q||2 + ||q − sA||2

= ||O2 − sB||2 + ||sB − q||2 + ||p− sA||2 + ||p− q||2

> ||O2 − sB||2. (A.6)

Therefore, s2 = sB is one of the best response of expert 2. ■

Lemma 4 Suppose that O2 /∈ P2(s1), O2 ∈ T (s1) and sB ∈ P2(s1) ∪ T (s1). Then, expert 2’s best

response is s2 = sC .

Proof of Lemma 4. Let C(a, L+(a, b), L+(a, c)) be the cone that have a vertex of a and sides of

L+(a, b) and L+(a, c). Suppose, in contrast, that O2 /∈ C(O′
2, L

+(O′
2, s1), L

+(O′
2, ŝ1)). That is,

O2 ∈ T (s1)\C(O′
2, L

+(O′
2, s1), L

+(O′
2, ŝ1)). There are two possibilities regarding the position of

O2: either (a) O2 ∈ C(s1, l(s1), L
+(O′

2, s1)) or (b) O2 ∈ C(ŝ1, l(ŝ1), L
+(O′

2, ŝ1)). For Case (a), sB ∈

l(s1)\(L̄(Os1 , s1)\{s1}) must be satisfied. This means that sB /∈ P2(s1)∪T (s1), a contradiction. For

Case (b), we can imply a contradiction in a similar way. Then, O2 ∈ C(O′
2, L

+(O′
2, s1), L

+(O′
2, ŝ1)).

From Lemma 1, sA ∈ L+(O′
2, O2). Because O2 ∈ C(O′

2, L
+(O′

2, s1), L
+(O′

2, ŝ1)), sA ∈ I2(s1) ∩

R1(s1). If sA ∈ I2(s1) ∩ P1(s1), then sA ̸= sC because P1(s1) ⊂ T (s1). Then, both s2 = sA

and s2 = sB induce action y = s1. As s1 ∈ I2(s1)\T (s1), s2 = sC is best for expert 2. If

sA ∈ I2(s1) ∩ I1(s1), then sA = sC . Similarly, as s2 = sB induces action y = s1, s2 = sC is expert

2’s best response. ■
Next, given expert 2’s best response specified above, we show that truth telling is a best response

for expert 1. If expert 1 sends s1 = θ, then s2 = θ and action y = θ is induced. Hence, it is sufficient

to show that for any deviation, the induced action is not included in P1(θ). Consider the same five
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cases specified above. In Case (i), action y = O2 is induced, but obviously O2 /∈ P1(θ) because the

experts have opposing biases. The following lemmas show that induced actions are not included in

P1(θ); Cases (ii), (iii), (iv), and (v) correspond to Lemmas 5, 6, 7, and 8, respectively.

Lemma 5 Suppose that O2 ∈ P2(s1) and sA /∈ P2(s1) ∪ T (s1). Then, sA /∈ P1(θ).

Proof of Lemma 5. By the construction of sA, sA ∈ I2(s1). As sA /∈ T (s1), sA ∈ I2(s1)\T (s1).

That is, sA /∈ P1(s1). Suppose, in contrast, that sA ∈ P1(θ). As O2 ∈ P2(s1) and by Lemma 1,

sA ∈ R2(θ). That is, sA ∈ R1(θ)∩R2(θ). Let e, f ∈ Y be the point such that {θ, e} = L(θ,O2)∩I2(θ)

where e ̸= θ and {θ̂, f} = L(θ̂, O2)∩ I2(θ) where f ̸= θ̂. From Lemma 1, sA ∈ L+(O′
2, O2)∩ I2(s1).

Because of opposing biases, P1(θ) ∩ L̄(θ,O2) = ∅ and P1(θ) ∩ L̄(θ̂, O2) = ∅ from Lemma 2. Then,

to hold sA ∈ R1(θ) ∩ R2(θ), there exist α, β > 0 such that
−−−→
O2O

′
2 = α

−−→
O2e + β

−−→
O2f . This implies

that there exists point y∗∗ ∈ Y such that y∗∗ ∈ R1(θ) ∩ I2(θ) and y∗∗ +
−−−→
O′

2O2 = sA. That is,

sA ∈ R1(s1) ∩ I2(s1). Because R1(s1) ∩ I2(s1) ⊂ R1(s1), (R1(s1) ∩ I2(s1))\{s1, ŝ1} ⊂ P1(s1).

Because α, β > 0, sA ̸= s1, ŝ1. Then, sA ∈ (R1(s1) ∩ I2(s1))\{s1, ŝ1} ⊂ P1(s1). That is, we have

sA ∈ P1(s1), which is a contradiction. Therefore, sA /∈ P1(θ) must hold. ■

Lemma 6 Suppose that O2 ∈ P2(s1) and sA ∈ P2(s1) ∪ T (s1). Then, sC /∈ P1(θ).

Proof of Lemma 6. As sA ∈ P2(s1) ∪ T (s1), sA ∈ P1(s1) ∩ I2(s1). Then, there must exist α, β > 0

such that
−−−→
O′

2O2 = α
−−→
O′

2s1 + β
−−→
O′

2ŝ1. As
−−−−→
OθOs1 =

−−−→
O2O

′
2,

−−−−→
OθOs1 = −α

−−→
O′

2s1 − β
−−→
O′

2ŝ1. Hence:

−−−−→
OθOs1 = −α

−−→
O′

2s1 − β
−−→
O′

2ŝ1 = −α(
−−−−→
O′

2Os1 +
−−−→
Os1s1)− β(

−−−−→
O′

2Os1 +
−−−→
Os1 ŝ1)

= −α
−−−→
Os1s1 − β

−−−→
Os1 ŝ1 − (α+ β)

−−−−→
O′

2Os1 . (A.7)
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As the experts have opposing biases, there exist γ, δ ≥ 0 such that
−−−−→
Os1O

′
2 = −γ

−−−→
Os1s1 − δ

−−−→
Os1 ŝ1.

Then:

−−−−→
OθOs1 = (−α− γ(α+ β))

−−−→
Os1s1 + (−β − δ(α+ β))

−−−→
Os1 ŝ1 (A.8)

= (−α− γ(α+ β))
−−→
Oθθ + (−β − δ(α+ β))

−−→
Oθθ̂1.

Claim 1 Suppose that there exists α, β < 0 such that
−−−−→
OθOs1 = α

−−→
Oθθ + β

−−→
Oθθ̂.

Then, C(Oθ, L
+(Oθ, θ), L

+(Oθ, θ̂)) ⊆ T (s1).

Proof of Claim 1. Suppose that α, β < 0. Take any y ∈ C(Oθ, L
+(Oθ, θ), L

+(Oθ, θ̂)). Then, there

exist γ1, δ1 ≥ 0 such that
−−→
Oθy = γ1

−−→
Oθθ + δ1

−−→
Oθθ̂. Hence:

−−→
Os1y =

−−−−→
Os1Oθ +

−−→
Oθy = −α

−−→
Oθθ − β

−−→
Oθθ̂ + γ1

−−→
Oθθ + δ1

−−→
Oθθ̂ (A.9)

= (−α+ γ1)
−−−→
Os1s1 + (−β + δ1)

−−−→
Os1 ŝ1.

As −α+ γ1,−β + δ1 > 0, y ∈ T (s1). Therefore, C(Oθ, L
+(Oθ, θ), L

+(Oθ, θ̂)) ⊆ T (s1). □
As −α − γ(α + β),−β − δ(α + β) < 0, C(Oθ, L

+(Oθ, θ), L
+(Oθ, θ̂)) ⊆ T (s1) from Claim 1. Since

sC /∈ T (s1), sC /∈ C(Oθ, L
+(Oθ, θ), L

+(Oθ, θ̂)). Because P1(θ) ⊂ C(Oθ, L
+(Oθ, θ), L

+(Oθ, θ̂)),

sC /∈ P1(θ). ■

Lemma 7 Suppose that O2 /∈ P2(s1), O2 ∈ T (s1) and sB /∈ P2(s1) ∪ T (s1). Then, sB /∈ P1(θ).

Proof of Lemma 7. Let T (θ) be the interior of the cone C(Oθ, L
+(Oθ, θ), L

+(Oθ, θ̂)). As the experts

have opposing biases, O2 /∈ T (θ). Because O2 /∈ T (θ) and O2 ∈ T (s1), there exist α, β < 0 such

that
−−−−→
OθOs1 = α

−−→
Oθθ + β

−−→
Oθθ̂. From Claim 1, C(Oθ, L

+(Oθ, θ), L
+(Oθ, θ̂)) ⊆ T (s1). As sB /∈ T (s1),

sB /∈ C(Oθ, L
+(Oθ, θ), L

+(Oθ, θ̂)). Because P1(θ) ⊂ C(Oθ, L
+(Oθ, θ), L

+(Oθ, θ̂)), sB /∈ P1(θ). ■

Lemma 8 Suppose that O2 /∈ P2(s1), O2 ∈ T (s1) and sB ∈ P2(s1) ∪ T (s1). Then, sC /∈ P1(θ).

Proof of Lemma 8. As we have shown in the proof of Lemma 4, O2 ∈ C(O′
2, L

+(O′
2, s1), L

+(O′
2, ŝ1)).

Also, from the proof of Lemma 4, we can say that sA ∈ R1(s1) ∩ I2(s1). Suppose, in contrast,

that sA ∈ I1(s1) ∩ I2(s1); that is, sA = sC ∈ {s1, ŝ1}. This means that either O2 ∈ L(O′
2, s1)

or O2 ∈ L(O′
2, ŝ1). However, as we have shown in the proof of Lemma 4, this implies that sB /∈

P2(s1)∪T (s1) because O2 ∈ T (s1)∩C(O′
2, L

+(O′
2, s1), L

+(O′
2, ŝ1)), which is a contradiction. Hence,
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sA ∈ P1(s1) ∩ I2(s1) must hold. We can apply the same argument in the proof of Lemma 6, and

then we can say that sC /∈ P1(θ). ■
By Lemmas 5, 6, 7, and 8, we can say that for any state θ, any deviation from s1 = θ never

improves expert 1’s payoff. Thus, given expert 2’s and the decision-maker’s strategies, truth telling

is one of the best response of expert 1. It is obvious that, on the equilibrium path, the belief

specified by the extended self-serving belief is consistent with Bayes’ rule. Therefore, it is a PBE,

a fully revealing equilibrium. In summary, the players’ strategies are described as follows:

µ∗
1(θ) = θ (A.10)

µ∗
2(θ, s1) =



θ if s1 = θ

O2 if O2 /∈ P2(s1) ∪ T (s1)

sA if O2 ∈ P2(s1) and sA /∈ P2(s1) ∪ T (s1)

sC if O2 ∈ P2(s1) and sA ∈ P2(s1) ∪ T (s1)

sB if O2 /∈ P2(s1) and O2 ∈ T (s1) and sB /∈ P2(s1) ∪ T (s1)

sC if O2 /∈ P2(s1) and O2 ∈ T (s1) and sB ∈ P2(s1) ∪ T (s1)

(A.11)

P∗(θ|s1, s2) =



1 if s2 /∈ P2(s1) ∪ T (s1) and θ = s2

0 if s2 /∈ P2(s1) ∪ T (s1) and θ ̸= s2

1 if s2 ∈ P2(s1) ∪ T (s1) and θ = s1

0 if s2 ∈ P2(s1) ∪ T (s1) and θ ̸= s1

(A.12)

y∗(s1, s2) =

 s2 if s2 /∈ P2(s1) ∪ T (s1)

s1 if s2 ∈ P2(s1) ∪ T (s1)
(A.13)

(Necessity) Suppose, by contrast, that there exists a fully revealing equilibrium (µ∗
1, µ

∗
2, y

∗;P∗) in

like-biases cases. By Lemma 2, P1(θ) ∩ L̄(θ,O2) ̸= ∅. Pick a point θ′ ∈ P1(θ) ∩ L̄(θ,O2), as in

Figure 11. Because there exists a fully revealing equilibrium, on the equilibrium path, there exist

messages s1, s2, s
′
1 and s′2 such that:

µ∗
1(θ) = s1, µ∗

2(θ, s1) = s2, y∗(s1, s2) = θ, (A.14)

µ∗
1(θ

′) = s′1, µ∗
2(θ

′, s′1) = s′2, y∗(s′1, s
′
2) = θ′. (A.15)

First, show that s1 ̸= s′1. Suppose, in contrast, that s1 = s′1. Because y∗(s1, s2) ̸= y∗(s′1, s
′
2),

s2 ̸= s′2. However, because θ′ ∈ L̄(θ,O2), expert 2 has an incentive to send s′2 at state θ after

observing s1, which is a contradiction. Therefore, s1 ̸= s′1 must hold. Next, we show that, given
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expert 1’s message s′1, there is no message s′′2 by expert 2 such that y∗(s′1, s
′′
2) ∈ P2(θ

′). Suppose, by

contrast, that there exists such a message s′′2. Then, expert 2’s best response to the message s′1 at

θ′ is not sending s′2 because, by sending s′′2, expert 2’s utility is strictly improved. This contradicts

the message s′2 being on the equilibrium path. Thus, such a message s′′2 does not exist. Finally,

we show that expert 1 has an incentive to deviate. Suppose that expert 1 sends message s′1 at the

state θ. Given s′1, there is no message s′′2 such that y∗(s′1, s
′′
2) ∈ P2(θ

′), as shown above. That is,

expert 2 cannot induce the actions in P2(θ
′) if expert 1 sends message s′1. From the construction

of θ′ and Lemma 1, the most preferred action in R2\P2(θ
′) for expert 2 is y = θ′, and it can be

induced by sending s′2. That is, sending message s′2 is expert 2’s unique best response to message

s′1 at state θ. However, action y = θ′ ∈ P1(θ). This means that expert 1 has no incentive to send

the message s1, which thus contradicts the message s1 being on the equilibrium path. Therefore,

there is no fully revealing equilibrium.23 ■

Proof of Proposition 5

Suppose, in contrast, that there exists a fully revealing equilibrium even if the conditions (i) and

(ii) hold. Fix θ ∈ Θ arbitrarily, and choose θ′ ∈ Θ satisfying the conditions. Because there exists a

fully revealing equilibrium, there exist the following messages:

µ∗
1(θ) = s1, µ∗

2(θ, s1) = s2, µ∗
3(θ, s1, s2) = s3, y∗(s1, s2, s3) = θ; (A.16)

µ∗
1(θ

′) = s′1, µ∗
2(θ

′, s′1) = s′2, µ∗
3(θ

′, s′1, s
′
2) = s′3, y∗(s′1, s

′
2, s

′
3) = θ′. (A.17)

Note that given s′1 and s′2, for any s̃3 ∈ S3, y
∗(s′1, s

′
2, s̃3) /∈ P3(θ

′); otherwise, expert 3 deviates

from sending s′3 at state θ′. By Lemma 1 and conditions (i), sending s′3 is expert 3’s unique best

response after observing s′1 and s′2 at state θ.

Claim 2 s1 ̸= s′1.

Proof of Claim 2. Suppose, in contrast, that s1 = s′1 = s∗. Because y∗(s1, s2, s3) ̸= y∗(s′1, s
′
2, s

′
3),

(s2, s3) ̸= (s′2, s
′
3). If s2 = s′2, then s3 ̸= s′3 must hold. However, in this scenario, expert 3 has an

incentive to send s′3 instead of s3 at state θ because θ′ lies in his line of endorsement at θ. That is,

s2 ̸= s′2 must hold. By Condition (ii), because θ /∈ P1(θ), θ /∈ K2(θ, θ
′). Now, given that expert 1

sends s∗ at state θ, consider a situation where expert 2 sends s′2. Because expert 3 sends s′3 after

23Notice that the proof of the necessary part does not depend on the direct message game setting. That is, the
impossibility result holds in both direct and indirect message games.
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observing s∗ and s′2 at state θ, action y = θ′ is induced. Because θ′ ∈ K2(θ, θ
′) and θ /∈ K2(θ, θ

′),

this is a profitable deviation for expert 2, which is a contradiction. Therefore, s1 ̸= s′1. □
By Claim 2, sending s′1 at state θ is a deviation by expert 1. Consider expert 2’s response

given observing s′1 at state θ. Suppose that y∗(s′1, s̃2, µ3(θ, s
′
1, s̃2)) /∈ K2(θ, θ

′) for any s̃2 ∈ S2\{s′2}.

Because expert 3 sends s′3 after observing s′1 and s′2 at state θ and θ′ ∈ K2(θ, θ
′), sending s′2 is

expert 2’s unique best response in this scenario. Hence, action y = θ′ is induced. However, because

θ′ ∈ K2(θ, θ
′), by Condition (ii), sending s′1 at state θ is expert 1’s profitable deviation. There-

fore, to hold the fully revealing equilibrium, there must exists message ŝ2 ∈ S2\{s′2} such that

µ∗
2(θ, s

′
1) = ŝ2 and y∗(s′1, ŝ2, µ3(θ, s

′
1, ŝ2)) ∈ K2(θ, θ

′). Also, to hold the fully revealing equilibrium,

y∗(s′1, ŝ2, µ3(θ, s
′
1, ŝ2)) /∈ P1(θ); otherwise, expert 1 has an incentive to deviate. However, by Condi-

tion (ii), y∗(s′1, ŝ2, µ3(θ, s
′
1, ŝ2)) ∈ K2(θ, θ

′)\P1(θ) is impossible, which is a contradiction. Therefore,

there exists no fully revealing equilibrium. ■

Proof of Proposition 6

We modify the strategies and beliefs of the experts as follows. Let µ1 : Σ → S1 represent expert

1’s pure strategy, and µ2 : Σ×S1 → S2 and P2 : Σ×S1 → ∆(Θ) represent expert 2’s pure strategy

and belief, respectively.24 Define set J ≡ {y ∈ Y | there exist α1 ∈ R and α2 ≤ 0 such that y =

O2 + α1
−−→
Oθθ + α2

−−→
Oθθ̂}. That is, set J is the half-space separated by line l̄, which is parallel to l(θ)

and go through O2. Define sD ≡ L(O1, θ) ∩ l̄.

(i) Suppose that x1 ·x2 < 0, ϵ1 = 0 and ϵ2 < 1− |UE1 (θ,θ,x1)|
|UE1 (sD,θ,x1)|

.25 Let (µ∗
1, µ

∗
2, y

∗;P∗) be the fully

revealing equilibrium specified in Proposition 4, and show that (µ̃1, µ̃2, ỹ; P̃2, P̃) defined as follows

is a PBE.

µ̃1(θ) = θ (A.18)

µ̃2(σ, s1) =

 µ∗
2(θ, s1) if σ = θ

s1 if σ = ϕ
(A.19)

ỹ(s1, s2) = y∗(s1, s2) (A.20)

P̃2(θ̃|σ, s1) =

 1 if [σ = θ and θ̃ = θ] or [σ = ϕ and θ̃ = s1]

0 otherwise
(A.21)

P̃(θ̃|s1, s2) = P∗(θ̃|s1, s2) (A.22)

24Expert 1’s belief is uniquely determined upon his observation. If σ1 = θ, then the belief assigns probability 1 to
the true state. If σ1 = ϕ, then the belief is identical to the prior distribution. For simple exposition, we omit the
representation of expert 1’s belief.

25Note that because the experts have opposing biases, 0 < |UE1 (θ,θ,x1)|
|UE1 (sD,θ,x1)|

< 1.
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Figure A.5: Proposition 6

It is straightforward that ỹ is the decision-maker’s best response given her belief P̃ . We consider

expert 2’s decision given his belief P̃2 and ỹ. If σ = θ, then this scenario is identical to the noiseless

case. Hence, by the same arguments in Proposition 4, µ∗
2 represents the optimal behavior of expert

2. If σ = ϕ, then expert 2 believes that expert 1 reports the true state for certain. Given this

belief and ỹ consistent with the extended self-serving belief, sending s2 = s1 is optimal because

expert 2 cannot strictly improve his utility by sending s2 ̸= s1. Hence, µ̃2 represents expert 2’s

best response.

Next, we consider expert 1’s decision given µ̃2 and ỹ. If expert 1 sends s1 = θ, then action y = θ

is induced. That is, his utility is UE1(θ, θ, x1). If expert 1 sends s1 ̸= θ, then his expected utility

is Ũ(s1) ≡ (1− ϵ2)U
E1(y∗(s1, µ

∗
2(θ, s1)), θ, x1) + ϵ2U

E1(s1, θ, x1). Now, we suppose that s1 /∈ P1(θ).

Then, UE1(θ, θ, x1) ≥ Ũ(s1) because y
∗(s1, µ

∗
2(θ, s1)) /∈ P1(θ) as shown in Proposition 4. Therefore,

expert 1 has no strict incentive to send s1 /∈ P1(θ). Then, we suppose that s1 ∈ P1(θ). The next

lemma gives us an upper bound of Ũ(s1).

Lemma 9 Suppose that x1 · x2 < 0. Then, UE1(sD, θ, x1) ≥ UE1(y∗(s1, µ2(θ, s1)), θ, x1) holds for

any θ ∈ Θ and s1 ∈ P1(θ).

Proof of Lemma 9. Fix θ ∈ Θ and s1 ∈ P1(θ) arbitrarily. First, we show that y∗(s1, µ
∗
2(θ, s1)) = sA

or O2. It is obvious that y
∗(s1, µ

∗
2(θ, s1)) = O2 if O2 /∈ P2(s1)∪ T (s1). Then, we assume that O2 ∈

P2(s1)∪ T (s1). Because x1 · x2 < 0, there exist β1, β2 < 0 such that
−−−→
OθO2 = β1

−−→
Oθθ+ β2

−−→
Oθθ̂. Also,

because s1 ∈ P1(θ), there exist γ1, γ2 > 0 such that
−→
θs1 = γ1

−−→
Oθθ+γ2

−−→
Oθθ̂. Therefore, if O2 ∈ T (s1),

then γ2 < 0 must hold, but it is impossible as long as s1 ∈ P1(θ). Thus, O2 ∈ P2(s1)\T (s1). Now,

we suppose, in contrast, that sA ∈ T (s1). By Lemma 1, if sA ∈ T (s1), then there exist δ1, δ2 ≤ 0
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such that
−→
θs1 = δ1

−−→
O2θ + δ2

−−→
O2θ̂. Hence:

−→
θs1 = δ1(

−−−→
O2Oθ +

−−→
Oθθ) + δ2(

−−−→
O2Oθ +

−−→
Oθθ̂)

= (−β1δ1 − β1δ2 + δ1)
−−→
Oθθ + (−β2δ1 − β2δ2 + δ2)

−−→
Oθθ̂. (A.23)

However, because −β2δ1 − β2δ2 + δ2 ≤ 0, which is a contradiction to γ2 > 0. Then, sA /∈ T (s1).

Therefore, if O2 ∈ P2(s1) ∪ T (s1), then y∗(s1, µ2(θ, s1)) = sA.

Next, we show that y∗(s1, µ2(θ, s1)) ∈ J . By the above arguments, if s1 ∈ P1(θ), then

y∗(s1, µ2(θ, s1)) = sA or O2. Because it is obvious that O2 ∈ J , it is sufficient to show that sA ∈ J .

By Lemma 1, sA ∈ I2(s1)∩L+(O′
2, O2); that is, there exists η > 0 such that sA = O2−η

−→
θs1. Hence,

sA = O2− ηγ1
−−→
Oθθ− ηγ2

−−→
Oθθ̂. Because −ηγ2 < 0, sA ∈ J . By construction, ||O1− J || = ||O1− sD||.

Because sD ∈ l̄ and l̄ goes through O2, we can say that UE1(sD, θ, x1) ≥ UE1(y∗(s1, µ
∗
2(θ, s1)), θ, x1).

■
By Lemma 9:

UE1(θ, θ, x1)− (1− ϵ2)U
E1(y∗(s1, µ2(θ, s1)), θ, x1)− ϵ2U

E1(s1, θ, x1)

= (1− ϵ2)
{
UE1(θ, θ, x1)− UE1(y∗(s1, µ2(θ, s1)), θ, x1)

}
+ϵ2

{
UE1(θ, θ, x1)− UE1(s1, θ, x1)

}
≥ (1− ϵ2)

{
UE1(θ, θ, x1)− UE1(sD, θ, x1)

}
+ϵ2

{
UE1(θ, θ, x1)− UE1(O1, θ, x1)

}
= (1− ϵ2)

{
UE1(θ, θ, x1)− UE1(sD, θ, x1)

}
+ϵ2U

E1(θ, θ, x1). (A.24)

Because ϵ2 < 1− |UE1 (θ,θ,x1)|
|UE2 (sD,θ,x1)|

and x1 · x2 < 0, equation (A.24) is positive. Therefore, expert 1 has

no strict incentive to send s1 ∈ P1(θ). Thus, µ̃1 is expert 1’s best response. It is straightforward

that P̃2 and P̃ are consistent with Bayes’ rule. Therefore, this is a PBE, and the decision-maker

always knows the true state on the equilibrium path. That is, it is a fully revealing equilibrium. ■
(b) Suppose, in contrast, that there exists a fully revealing equilibrium (µ∗

1, µ
∗
2, y

∗;P∗
2 ,P) for

some ϵ1 > 0. That is, for any θ ∈ Θ, (σ1, σ2) = (ϕ, θ) occurs with positive probability, and then

y∗(µ∗
1(ϕ), µ2(θ, µ

∗
1(ϕ))) = θ must hold. Fix θ ∈ Θ, arbitrarily, and define θ′ ≡ θ + x2 and ŝ2 ≡

µ∗
2(θ

′, µ∗
1(ϕ)). By definition of fully revealing equilibrium, y∗(µ∗

1(ϕ), ŝ2) = θ′ and y∗(µ∗
1(ϕ), µ

∗
2(θ, µ

∗
2(ϕ))) =

θ must hold. Hence, it must be µ∗
2(θ, µ

∗
1(ϕ)) ̸= ŝ2. However, given y∗, expert 2 who observes σ2 = θ

and s1 = µ∗
1(ϕ) has an incentive to deviate from s2 = µ∗

2(θ, µ
∗
1(ϕ)) to s2 = ŝ2 because the latter

induces the most favorite action to expert 2, which is a contradiction. Therefore, there exists no

fully revealing equilibrium for any ϵ1 ∈ (0, 1) and ϵ2 ∈ [0, 1). ■
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Appendix B: Figures of Proposition 4. Cases 1 to 6.
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Appendix C: Supplementary Materials

C.1 n-expert models

Claim 3 Consider the three-expert model. If the conditions of Proposition 5 are satisfied, then

they have like biases.

Proof. Suppose, in contrast, that they have opposing biases, and arbitrarily fix θ. By Condition

(ii), because K2(θ, θ
′) ⊂ P1(θ), O2 ∈ P1(θ). That is, x1 · x2 > 0. Thus, one of the following cases

must occur: (i) x1 · x3 ≤ 0, or (ii) x1 · x3 > 0 and x2 · x3 ≤ 0.

In the first scenario, because x1 · x3 ≤ 0, θ̃ /∈ P1(θ) for any θ̃ ∈ L̄(θ,O3). By Condition (i),

θ′ ∈ L̄(θ,O3), and then θ′ /∈ P1(θ). However, by definition, θ′ ∈ K2(θ, θ
′) must hold, which is a

contradiction to Condition (ii). In the second scenario, because x2 · x3 ≤ 0, P2(θ) ⊆ K2(θ, θ̃) for

any θ̃ ∈ L̄(θ,O3). By Conditions (i) and (ii), we can say that P2(θ) ⊆ K2(θ, θ
′) ⊂ P1(θ). To hold

this relation, x1 and x2 must be linearly dependent. However, because x1 ·x3 > 0, x2 · x3 > 0 must

hold, which is a contradiction. Therefore, this case must be like biases. ■

C.2 Mixed strategies

With abuse of notation, let µ1 : Θ → ∆(S1) and µ2 : Θ × S1 → ∆(S2) be experts 1’s and 2’s

strategies, respectively. Note that the decision-maker always undertakes a pure strategy because

of the quadratic-loss utility function. We say that a PBE is a fully revealing equilibrium in the

mixed-strategy environment if for any θ ∈ Θ, any s1 ∈ supp(µ∗
1(θ)) and any s2 ∈ supp(µ∗

2(θ, s1)),

P∗(θ|s1, s2) = 1.

Proposition 8 Consider the two-dimensional unbounded state space model with mixed strategies.

Then, there exists a fully revealing equilibrium if and only if the experts have opposing biases.

Proof. (Sufficiency) Show that the strategies and belief specified in Proposition 4 is also an equi-

librium in the mixed-strategy environment. It is straightforward that y∗ is decision-maker’s best

response given P∗. Because expert 2 observes the exact message that expert 1 sends before sending

a message, µ∗
2 specifed is expert 2’s best response. Because sending s1 ̸= θ does not improve expert

1’s utility given µ∗
2 and y∗ as shown in Lemmas 5 to 8, expert 1 has no incentive to randomize

messages other than s1 = θ. Therefore, µ∗
1 is expert 1’s best response. It is obvious that, on the

equilibrium path, the belief specifed by P∗ is consistent with Bayes’ rule. Therefore, it is a fully

revealing equilibrium.
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(Necessity) Suppose, in contrast, that there exists a fully revealing equilibrium when the ex-

perts have like biases. Fix θ ∈ Θ arbitrarily. By Lemma 2, P1(θ) ∩ L̄(θ,O2) ̸= ∅. Choose

θ′ ∈ P1(θ) ∩ L̄(θ,O2) arbitrarily. Because there exists a fully revealing equilibrium (µ∗
1, µ

∗
2, y

∗;P∗),

there exist a pair of messages (s1, s2) and (s′1, s
′
2) such that:

s1 ∈ supp(µ∗
1(θ)), s2 ∈ supp(µ∗

2(θ, s1)), y∗(s1, s2) = θ, (A.25)

s′1 ∈ supp(µ∗
1(θ

′)), s′2 ∈ supp(µ∗
2(θ

′, s′1)), y∗(s′1, s
′
2) = θ′, (A.26)

Claim 4 s′1 /∈ supp(µ∗
1(θ)).

Proof of Claim 4. Suppose, in contrast, that s′1 ∈ supp(µ∗
1(θ)). Because (µ∗

1, µ
∗
2, y

∗;P∗) is a

fully revealing equilibrium, there exists a message ŝ2 ∈ S2 such that ŝ2 ∈ supp(µ∗
2(θ, s

′
1)) and

y∗(s′1, ŝ2) = θ. Hence, UE2(θ, θ, x2) ≥ UE2(y∗(s′1, s̃2), θ, x2) for all s̃2 ∈ S2 must hold; otherwise,

it contradicts that ŝ2 ∈ supp(µ∗
2(θ, s

′
1)). However, because θ′ ∈ L̄(θ,O2) and y∗(s′1, s

′
2) = θ′,

UE2(y∗(s′1, s
′
2), θ, x2) > UE2(θ, θ, x2), which is a contradiction. □

Claim 5 µ∗
2(θ, s

′
1) = s′2.

Proof of Claim 5. Note that for any s̃2 ∈ S2, y
∗(s′1, s̃2) /∈ P2(θ

′); otherwise, expert 2 never sends s′2

at state θ′. Because θ′ ∈ L̄(θ,O2) and by Lemma 1, sending s′2 is expert 2’s unique best response

when observing s′1 at state θ. That is, µ∗
2(θ, s

′
1) = s′2. □

By Claim 4, sending s′1 at state θ is a deviation from µ∗
1. By Claim 5, expert 2 sends s′2 after

observing s′1 at state θ. That is, action y = θ′ is induced. However, because θ′ ∈ P1(θ), this is a

profitable deviation for expert 1, which is a contradiction. Therefore, there exists no fully revealing

equilibrium when the experts have like biases. ■
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