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Abstract

This paper considers a persuasion game between one sender and one receiver. The perfectly

informed sender can fully certify any private information that is drawn from a continuum set,

and the receiver has binary actions. We focus on the situation where both full information

disclosure and full information suppression are impossible. We characterize the set of pure

strategy equilibria in terms of informativeness measured by the receiver’s ex ante expected utility

in this environment; there exist continuum equilibria. The set is characterized by the most and

the least informative equilibria, and then any value between the bounds can be supported in

equilibrium with transparent construction of the associated equilibrium.
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1 Introduction

Persuasion games are costless sender–receiver games with certifiable private information. The

sender sends a message about his private information to the receiver who chooses an action that

affects the players’ payoffs.1 The sender can send any message costlessly, but he cannot misreport

the information because the information is certifiable and the sender is required to submit evi-

dence with his message.2 Hence, the sender manipulates the information by concealing unfavorable

information instead of lying.

The aim of this paper is making clear how much information is transmitted in equilibrium

when full information disclosure and full information suppression are impossible. The existing

literature of persuasion games mainly focuses on the situation where full information disclosure

or full information suppression occurs, and discusses the possibilities of these extreme scenarios.

However, in our best knowledge, we know little about what happens if these extreme scenarios

do not occur. That is, we do not know what are the second-best and second-worst equilibria in

terms of information transmission. This is an important issue; for example, without knowing what

happens in the second-best or the second-worst scenario, we cannot compare different environments

where the extreme scenarios do not occur. This paper then tries to fill the gap by characterizing

non-extreme equilibria in terms of transmitted information.

In order to manage the objective, this paper considers a simple persuasion game between one

sender and one receiver. The sender is perfectly informed about the state of nature that is drawn

from a continuum set, and he can fully certify this information. An important restriction of the

model is that the receiver’s action is binary; that is, y = y1 or y = y2. Hence, depending on

the players’ ex post preferences over the actions, the state space is partitioned into the following

five regions: (i) both prefers action y1, (ii) both prefers action y2, (iii) the sender prefers action

y1, but the receiver prefers action y2, (iv) the sender prefers action y2, but the receiver prefers

action y1, and (v) either one of the player is indifferent. We assume that the conflict between the

players is nontrivial in the sense that regions (i) to (iv) occur with positive probabilities. Under this

assumption, both full information disclosure and full information suppression are never supported

in equilibrium.

The main result of this paper is a characterization of the set of pure strategy equilibria from the

viewpoint of the informativeness of equilibria measured by the receiver’s ex ante expected utility.3

1As a matter of convention, we treat the sender as male and the receiver as female throughout this paper.
2In the literature, such information is called hard information.
3The definition of the informativeness in this paper is different from that used in the information theory. We

follow the definition frequently used in the cheap talk games à la Crawford and Sobel (1982).
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First, we specify the most and the least informative equilibria. In the most informative equilibrium,

types in agreement regions (i) and (ii) fully disclose, but all types in disagreement regions (iii) and

(iv) are pooling. On the other hand, in the least informative equilibrium, types in the disagreement

region (iii) (resp. disagreement region (iv)) are pooling with types in agreement region (i) (resp.

agreement region (ii)) up to the point where the actions are indifferent for the receiver given the

pooling types, and the remaining types disclose. An implication from this characterization is that

in any equilibrium, the sender can suppress a part of unfavorable information, but cannot suppress

all of them if the players’ conflict is nontrivial in the above sense.

Furthermore, we show that any value between the bounds can be supported in equilibrium; that

is, there exist continuum equilibria in this setup. Each equilibrium is characterized by a set of types

where the information is disclosed to the receiver. Intuitively, this disclosure set is “minimized” in

the least informative equilibrium and “maximized” in the most informative equilibrium. We then

continuously expand the “minimized” disclosure set until converging to the “maximized” one. For

any value between the bounds, during the expansion process, we can find an appropriate disclosure

set supported in equilibrium where the receiver’s ex ante expected utility coincides with that value.

This model, for instance, describes communication between an investor and a consultant. The

investor asks professional advice from the consultant who knows the economic environment before

she decides whether to invest or not. Imagine a situation where the consultant has a state-dependent

bias; that is, the consultant is more eager to invest than the investor when the state is good, but

he is more reluctant to invest than her when the state is bad. In this situation, the investor cannot

distinguish whether the consultant conceals bad information to induce the investment or conceals

good information to deter the investment when receiving ambiguous advice. Our results predict

reasonable behaviors in this context. On the one hand, the most informative equilibrium associates

with the scenario where the aggressive and the defensive types are pooling by advising same way,

e.g., “state is neutral as usual.” On the other hand, the least informative equilibrium associates

with the scenario where the aggressive and the defensive types adopt different advices, e.g., the

aggressive types emphasize only the positive factors, but the defensive types emphasizes only the

negative factor.

The paper is organized as follows. In the next subsection, we discuss the related literature. In

Section 2, we outline the model. In Section 3, we characterize the set of equilibria. In Section 4,

we discuss some extensions. Section 5 concludes the paper.
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1.1 Related Literature

The seminal studies of persuasion games are those of Milgrom (1981) and Milgrom and Roberts

(1986).4 These papers assume that (i) the sender’s preference is type-independent (e.g., monotonic

in the receiver’s action), (ii) the receiver can distinguish whether the sender discloses all information,

and (iii) no one can commit any strategies. In this environment, full information disclosure can be

supported as the unique equilibrium outcome by undertaking the sender’s most unfavorable action

as a punishment for withholding information. This is the well-known unraveling argument in the

literature. The subsequent researches revisit the above assumptions and check the validity of the

unraveling argument.

Seidmann and Winter (1997), Giovannoni and Seidmann (2007) and Hagenbach et al. (2013)

relax assumption (i). Seidmann and Winter (1997) and Giovannoni and Seidmann (2007) assume

that the sender’s preference is also type-dependent. The players have single-peaked preferences in

the receiver’s action, and the bliss points vary depending on the sender’s private information. These

papers show that satisfying the single-crossing condition is the necessary and sufficient condition

for full information disclosure in the environment where the players have the single-peaked prefer-

ences. Recently, Hagenbach et al. (2013) further relax assumption (i) and analyze a more general

environment including monotonic and single-peaked preferences.5 They show that the acyclicity of

mimicking incentives is the necessary and sufficient condition for full information disclosure in the

general environment as long as the players have degenerated beliefs off the equilibrium path.6

Shin (1994a, 1994b), Lipman and Seppi (1995), Wolinsky (2003) and Mathis (2008) are cate-

gorized in the branch relaxing assumption (ii).7 Because the receiver cannot correctly recognize

whether the sender discloses everything, full information disclosure becomes hard to hold. Mathis

(2008) characterizes the necessary and sufficient condition for the unraveling argument, which is

more demanding compared with that in the fully certifiable environments.

As a departure from full information disclosure, Forges and Koessler (2008) geometrically char-

acterize the set of all Nash and perfect Bayesian equilibria in one-round and multi-round finite

persuasion games with assumption (ii). Their characterization is quite general, and the results

can apply to any finite persuasion games holding assumption (ii). Lanzi and Mathis (2008) and

4The idea of certifiable information disclosure had been used in industrial organization theory before they formal-
ized the concepts. See Grossman (1981) and Grossman and Hart (1980).

5We appreciate an anonymous referee for this reference.
6Hagenbach et al. (2013) call this condition acyclic masquerade relation.
7Shin (1994a, 1994b) study the situations where the sender is imperfectly informed. On the other hand, Lipman

and Seppi (1995), Wolinsky (2003) and Mathis (2008) analyze the partially certifiable environments, in which some
private information is certifiable, but the others is not.
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Dziuda (2011) characterize the non-full-disclosure behaviors more concretely. Lanzi and Mathis

(2008) characterize equilibria in a partially certifiable persuasion game where the receiver has bi-

nary alternatives. Dziuda (2011) considers the “strategic argumentation” model, in which the

sender’s private information represents the “number of arguments” that endorses each alternative,

and discusses the properties of equilibria.

Glazer and Rubinstein (2004, 2006) and Kamenica and Gentzkow (2011) study the non-full-

disclosure behaviors in the environments where assumption (iii) is relaxed. In Glazer and Rubin-

stein (2004, 2006), the receiver can commit to an action rule, and they characterize the optimal

“persuasion rule” that minimizes the probability that the receiver acts incorrectly. In Kamenica

and Gentzkow (2011), on the other hand, the sender chooses his own informativeness before the

communication, but he commits to disclose what he knows. They characterize the sender-optimal

equilibrium in this environment.

This paper can be regarded as a complement of the above papers. First, this paper is located in

the branch of relaxing assumption (i) like Seidmann and Winter (1997), Giovannoni and Seidmann

(2007) and Hagenbach et al. (2013). However, the main objective of this paper is characterizing

the set of equilibria when full information disclosure is impossible instead of focusing on full in-

formation disclosure. Second, because of the cost of generality, the characterization by Forges and

Koessler (2008) is quite abstract, and then we still know little about properties of each equilib-

rium. This paper tries to fill the gap by characterizing the equilibrium set from the viewpoint of

the informativeness of each equilibrium.8 Third, the motivation of this paper is similar to those

Lanzi and Mathis (2008) and Dziuda (2011), but the emphasized points are different. Although

these papers relax assumptions (ii) to focus on the aspects of the sender’s certifiability, this paper

relaxes assumption (i) in order to focus on the preference aspect.9 Finally, we do not allow any

commitment of the players as a first step of analysis.

2 The Model

There is one sender and one receiver. The receiver chooses an action y ∈ Y ≡ {y1, y2}, but the

outcome produced by action yi depends on the sender’s private information. Let θ ∈ Θ ≡ [0, 1] be

the sender’s private information. We interchangeably call set Θ the type space or state space. Let

8For simple representation, we adopt a continuum state space model with binary actions instead of finite games
adopted in Forges and Koessler (2008).

9Our setup is similar to that of Lanzi and Mathis (2008). In their model, the sender’s preference satisfy a single-
crossing condition by Giovannoni and Seidmann (2007), but the private information is partially certifiable. While
we assume full certifiability of the private information, we study a model without the single crossing condition to
emphasize the preference aspects.
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F (·) be the prior distribution function on the type space Θ with full support density function f(·);

that is, f(θ) > 0, ∀θ ∈ Θ.

Let M(θ) ≡ {X ∈ P(Θ)|θ ∈ X} be the sender’s message space when the sender’s type is θ,

where P(Θ) is the power set of the type space Θ. Any available message must contain the true

information θ. Define M ≡ ∪θ∈ΘM(θ) = P(Θ), where m ∈ M represents a message sent by the

sender. Note that for any subset P ⊆ Θ, message m = P has a property such that M−1(P ) = P .

That is, this is a fully certifiable environment.

We denote the receiver’s and the sender’s von Neumann–Morgenstern utility functions by u :

Θ×Y → R and v : Θ×Y → R, respectively. We assume that both u(θ, y) and v(θ, y) are continuous

in θ for any y ∈ Y . Depending on conflicts between the players, the state space is partitioned into

the following five regions:

Θ11 ≡ {θ ∈ Θ|u(θ, y1) > u(θ, y2) and v(θ, y1) > v(θ, y2)}

Θ22 ≡ {θ ∈ Θ|u(θ, y2) > u(θ, y1) and v(θ, y2) > v(θ, y1)}

Θ12 ≡ {θ ∈ Θ|u(θ, y1) > u(θ, y2) and v(θ, y2) > v(θ, y1)} (1)

Θ21 ≡ {θ ∈ Θ|u(θ, y2) > u(θ, y1) and v(θ, y1) > v(θ, y2)}

Θ0 ≡ Θ\(Θ11 ∪Θ22 ∪Θ12 ∪Θ21)

It is worth mentioning that if θ lies in region Θ11 ∪Θ22 ∪Θ0, then the sender and the receiver have

no conflict. We call regions Θ11,Θ22, and Θ0 agreement regions. On the other hand, if θ lies in

region Θ12 ∪Θ21, then there is conflict between the players. That is, if θ ∈ Θ12, then the receiver

prefers y1 but the sender prefers y2. Similarly, if θ ∈ Θ21, then the receiver prefers y2 but the

sender prefers y1. Hence, we call regions Θ12 and Θ21 disagreement regions. To avoid unnecessary

complexity, we assume that each region is measurable, and regions Θ11,Θ22,Θ12, and Θ21 have

positive measure but region Θ0 has zero measure. In other words, the sender and the receiver have

nontrivial conflicts.

The timing of the game is as follows. First, nature chooses the state of nature θ ∈ Θ according

to the prior distribution F (·). Only the sender observes the state θ. Second, the sender sends a

message m ∈ M(θ) given the state θ. Then, after observing the message, the receiver undertakes

an action y ∈ Y .

The sender’s pure strategy σ : Θ → M specifies a message sent by the sender. The receiver’s

pure strategy µ : M → Y describes an action that she chooses when she observes message m. Let

P : M → ∆(Θ) be the posterior belief of the receiver. This is a function from the entire message
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space M to the set of probability distributions on the type space Θ.10

We use the perfect Bayesian equilibrium (hereafter, PBE) as a solution concept and focus on

pure strategy equilibria. Because the information about the state is hard information, any message

must contain the true information. In other words, the receiver can infer that the states not

included in the observed message never occur for certain. Thus, we must place a restriction on the

receiver’s equilibrium belief. Letting S(P(·|m)) be the support of the receiver’s belief P(·|m), this

requirement is described below.

Requirement 1 Given a message m, S(P(·|m)) ⊆ m.

Definition 1 PBE

A triple (σ∗, µ∗;P∗) is a PBE if it satisfies the following conditions:

(i) σ∗(θ) ∈ argmaxm∈M(θ) v(θ, µ
∗(m)), ∀θ ∈ Θ;

(ii) µ∗(m) ∈ argmaxy∈Y EP∗(·|m)[u(θ, y)], ∀m ∈ M ;

(iii) P∗ is derived by σ∗ consistently from Bayes’ rule whenever possible.

Otherwise, P∗ is any probability distribution satisfying Requirement 1.

3 Characterization of Equilibrium Set

3.1 Impossibility of full information disclosure and full information suppression

First, we show that full information disclosure and full information suppression are impossible as

a preliminary result. Define yR(θ) ∈ argmaxy∈Y u(θ, y).11 We say that a PBE (σ∗, µ∗;P∗) is a full

disclosure equilibrium if µ∗(σ∗(θ)) = yR(θ) for any θ ∈ Θ. That is, in the full disclosure equilibrium,

the receiver can always undertake her most preferred action. Hereafter, we call action yR(θ) the

first-best action. We say that a PBE (σ∗, µ∗;P∗) is a full pooling equilibrium if σ∗(θ) = Θ for any

θ ∈ Θ.

Proposition 1 There exists neither full disclosure nor full pooling equilibrium.

All proofs are in the Appendix. These impossibility results are well known in the literature. Because

disagreement regions Θ12 and Θ21 are both nonempty, type θ ∈ Θ12 wants to mimic type θ′ ∈ Θ21,

10In relaxed notation, let P(·|m) represent a conditional probability function if the support of the posterior is
countable, and a conditional density function if the support is uncountable.

11Note that for any θ ∈ Θ\Θ0, y
R(θ) is uniquely determined.
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and vice versa.12 Hence, if the first-best action yR(θ) is induced in each state, then at least one

of the types has an incentive to deviate to message m = {θ, θ′} whatever off-the-equilibrium-path

beliefs are. That is, the full disclosure equilibrium does not exists. Similarly, because agreement

regions Θ11 and Θ22 are both nonempty, types in these regions prefer disclosing themselves to

mimicking other types by pooling. Therefore, the fully pooling behavior is never supported in

equilibrium.13

3.2 Characterization of equilibrium set

In this subsection, we characterize the set of pure strategy equilibria in terms of informativeness

measured by the receiver’s equilibrium ex ante expected utility when there exists neither full dis-

closure nor full pooling equilibrium. We say that equilibrium (σ, µ;P) is more informative than

equilibrium (σ′, µ′;P ′) if E[u(θ, µ(σ(θ)))] ≥ E[u(θ, µ′(σ′(θ)))], i.e., the former gives higher ex ante

expected utility to the receiver. First, we characterize the most and the least informative equi-

libria and then show that any degree of informativeness between the bounds can be supported

in equilibrium with transparent construction of the associated equilibrium. The most informative

equilibrium is given by the following proposition.

Proposition 2 There exists an equilibrium (σ+, µ+;P+) in which:

σ+(θ) =

 {θ} if θ ∈ Θ11 ∪Θ22 ∪Θ0

Θ12 ∪Θ21 if θ ∈ Θ12 ∪Θ21

(2)

Moreover, this equilibrium is one of the most informative equilibria.

This is an equilibrium in which types who disagree with the receiver are fully pooling, and

other types disclose their own types. Hence, the first-best action yR(θ) can be induced in the

both agreement regions and one of the disagreement regions. In our environment, each equilibrium

is characterized by the set of types in the disagreement regions where the first-best action yR(θ)

is induced. Hereafter, we call this set disclosure set. Hence, the disclosure set of equilibrium

(σ+, µ+;P+) is either disagreement region Θ12 or Θ21.
14 Furthermore, this proposition guarantees

that we need not consider more complicated partitions of the state space in order to find the best

12In other words, our environment violates the single-crossing condition by Giovannoni and Seidmann (2007), and
there is a cyclic masquerade relation in the terminology of Hagenbach et al. (2013).

13This is a corollary of Proposition 3.3 of Giovannoni and Seidmann (2007); that is, Condition A1 is violated in
our environment.

14The disclosure set in equilibrium (σ+, µ+;P+) is region Θ12 if and only if E[u(θ, y1)|Θ12∪Θ21] ≥ E[u(θ, y2)|Θ12∪
Θ21].
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equilibrium for the receiver. In other words, we can conclude that the receiver has to give up at

least the amount of information that is equivalent to either disagreement region Θ12 or Θ21 in any

equilibrium.

Intuitively, the reason why equilibrium (σ+, µ+;P+) is most informative comes from the mutual

mimicking incentives of types in the disagreement regions, like the reason for no full information

disclosure. As we have mentioned, the disclosure set of equilibrium (σ+, µ+;P+) is either disagree-

ment region Θ12 or Θ21. Hence, in order to dominate this equilibrium, we have to elicit information

from types in the complement of the disclosure set. That is, it is necessary that the first-best actions

yR(θ) and yR(θ′) are induced for some θ ∈ Θ12 and θ′ ∈ Θ21, simultaneously. However, it is impos-

sible because types θ and θ′ have mutual mimicking incentives. Therefore, further improvement of

informativeness is impossible, and then equilibrium (σ+, µ+;P+) is most informative.

Unlike the most informative equilibrium, the characterization of the least informative equilib-

rium depends crucially on the receiver’s utility function and the distribution of θ. Hereafter, to

simplify representations, we write E[·|Z] = E[·|θ ∈ Z]. There are the following four cases to be

considered:

(1) E[u(θ, y1)|Θ11 ∪Θ21] ≥ E[u(θ, y2)|Θ11 ∪Θ21] and E[u(θ, y1)|Θ22 ∪Θ12] ≤ E[u(θ, y2)|Θ22 ∪Θ12];

(2) E[u(θ, y1)|Θ11 ∪Θ21] ≥ E[u(θ, y2)|Θ11 ∪Θ21] and E[u(θ, y1)|Θ22 ∪Θ12] > E[u(θ, y2)|Θ22 ∪Θ12];

(3) E[u(θ, y1)|Θ11 ∪Θ21] < E[u(θ, y2)|Θ11 ∪Θ21] and E[u(θ, y1)|Θ22 ∪Θ12] ≤ E[u(θ, y2)|Θ22 ∪Θ12];

(4) E[u(θ, y1)|Θ11 ∪Θ21] < E[u(θ, y2)|Θ11 ∪Θ21] and E[u(θ, y1)|Θ22 ∪Θ12] > E[u(θ, y2)|Θ22 ∪Θ12].

The least informative equilibrium is characterized as follows.

Proposition 3 There exists equilibrium (σ−, µ−;P−) in which:

(i) in Case (1),

σ−(θ) =


Θ11 ∪Θ21 if θ ∈ Θ11 ∪Θ21

Θ22 ∪Θ12 if θ ∈ Θ22 ∪Θ12

{θ} if θ ∈ Θ0;

(3)

(ii) in Case (2),

σ−(θ) =


Θ11 ∪Θ21 if θ ∈ Θ11 ∪Θ21

Θ22 ∪ Θ̄12 if θ ∈ Θ22 ∪ Θ̄12

{θ} if θ ∈ (Θ12\Θ̄12) ∪Θ0;

(4)
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(iii) in Case (3),

σ−(θ) =


Θ11 ∪ Θ̄21 if θ ∈ Θ11 ∪ Θ̄21

Θ22 ∪Θ12 if θ ∈ Θ22 ∪Θ12

{θ} if θ ∈ (Θ21\Θ̄21) ∪Θ0;

(5)

(iv) in Case (4),

σ−(θ) =



Θ11 ∪ Θ̄21 if θ ∈ Θ11 ∪ Θ̄21

Θ22 ∪ Θ̄12 if θ ∈ Θ22 ∪ Θ̄12

(Θ12\Θ̄12) ∪ (Θ21\Θ̄21) if θ ∈ (Θ12\Θ̄12) ∪ (Θ21\Θ̄21)

{θ} if θ ∈ Θ0,

(6)

where Θ̄12 and Θ̄21 are subsets of regions Θ12 and Θ21 such that E[u(θ, y1)|Θ22∪Θ̄12] = E[u(θ, y2)|Θ22∪

Θ̄12] and E[u(θ, y1)|Θ11 ∪ Θ̄21] = E[u(θ, y2)|Θ11 ∪ Θ̄21], respectively. Moreover, this is one of the

least informative equilibria in each case.

In equilibrium (σ−, µ−;P−), types in the disagreement regions are pooling with types in the

agreement regions as much as possible. To simplify the exploitation, we focus on Case (2). Intu-

itively, this is a situation where all types in the disagreement region Θ21 can successfully conceal

themselves by mimicking types in agreement region Θ11, but it is impossible for types in dis-

agreement region Θ12. That is, some types in disagreement region Θ12 can conceal themselves by

mimicking types in agreement region Θ22. However, full suppression of disagreement region Θ12

by this way is impossible; if all types in region Θ12 are pooling with types in region Θ22, then

the receiver undertakes action y1. Types in region Θ22 then deviate to full-disclosure message for

inducing action y2.

The structure of equilibrium (σ−, µ−;P−) of Case (2) is as follows. All types in disagreement

region Θ21 are pooling with types in agreement region Θ11, and part of types in disagreement

region Θ12 are pooling with types in agreement region Θ22 up to the point where the receive is

indifferent between the actions given the pooling types, and the remaining types disclose themselves.

Hence, the disclosure set of this equilibrium is region Θ12\Θ̄12; that is, equilibrium (σ−, µ−;P−) is

characterized by region Θ̄12. Again, this proposition guarantees that it is unnecessary to consider

more complicated partition of the state space for constructing the least informative equilibrium; any

equilibrium attains higher ex ante expected utility than equilibrium (σ−, µ−;P−). It is worthwhile

to remark that the structure of region Θ̄12 is irrelevant to the result. Any subset Θ̃12 of region Θ12
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satisfying the condition that E[u(θ, y1)|Θ22 ∪ Θ̃12] = E[u(θ, y2)|Θ22 ∪ Θ̃12] minimizes the receiver’s

ex ante expected utility.

The reason why equilibrium (σ−, µ−;P−) attains the minimum is as follows. To be dominated

by this equilibrium, some types in disclosure set Θ12\Θ̄12 should conceal themselves by mimicking

other types; let Θ′
12 ⊆ Θ12\Θ̄12 be the set of those types. That is, types in region Θ′

12 must be

pooling with types in region Θ22∪Θ21. However, there is no additional room in region Θ22 because

E[u(θ, y1)|Θ22 ∪ Θ̄12] = E[u(θ, y2)|Θ22 ∪ Θ̄12]. Hence, the types in region Θ′
12 must be pooling with

types in region Θ21. Let Θ′
21 ⊆ Θ21 be the set types in region Θ21 that are pooling with types in

region Θ′
12. Because of the mutual mimicking incentives between types in regions Θ12 and Θ21,

Θ′
12 = Θ12\Θ̄12 must hold; otherwise, either type θ ∈ Θ12\(Θ̄12 ∪ Θ′

12) or type θ′ ∈ Θ′
21 has an

incentive to deviate to message m = {θ, θ′}. That is, the following condition should hold:

E[u(θ, y1)|(Θ12\Θ̄12) ∪Θ′
21] ≤ E[u(θ, y2)|(Θ12\Θ̄12) ∪Θ′

21]. (7)

However, (7) means that concealing types in region Θ12\Θ̄12 by pooling with types in region

Θ′
21 gives weakly better ex ante expected utility to the receiver than equilibrium (σ−, µ−;P−).

Therefore, we can conclude that equilibrium (σ−, µ−;P−) is least informative.

There are two implications from these results. First, at least all types in either one of the

disagreement regions conceal themselves in any equilibrium. In the most informative equilibrium

(σ+, µ+;P+), the disclosure set is exactly one of the disagreement regions. That is, in any equi-

librium, the receiver has to give up undertaking the first-best action yR(θ) over a region including

either entire region Θ12 or Θ21. Second, as long as the conflict between the players is nontrivial in

the sense that either one of Cases (2), (3) and (4) occurs, full suppression of unfavorite information

is impossible in any equilibrium. Because the receiver can undertake the first-best action yR(θ)

over disclosure set Θ12\Θ̄12 in the least informative equilibrium (σ−, µ−;P−), full suppression of

such unfavorite information is impossible in any equilibrium under the nontrivial conflict scenarios.

Given the results so far, we can characterize the set of pure strategy equilibria. Define U+ ≡

E[u(θ, µ+(σ+(θ)))] and U− ≡ E[u(θ, µ−(σ−(θ)))]. As shown in the following theorem, any value

between U− and U+ can be equilibrium ex ante expected utility of the receiver. In other words,

there are continuum equilibria in this setup.

Theorem 1 There exists an equilibrium (σ, µ;P) such that E[u(θ, µ(σ(θ)))] = U if and only if

U ∈ [U−, U+].
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Intuitively, by continuously shrinking or expanding the disclosure set of an equilibrium, any

value between the bounds can be supported as equilibrium ex ante expected utility of the receiver.

To simplify the exploitation, we assume that E[u(θ, y1)|Θ12 ∪ Θ21] ≥ E[u(θ, y2)|Θ12 ∪ Θ21] and

Case (2). Let X+ and X− be the disclosure sets in the most and least informative equilibrium,

respectively. That is, X+ = Θ12 and X− = Θ12\Θ̄12 under this assumptions. Because the structure

of region Θ̄12 is irrelevant to the result, we define region Θ̄12 as follows: Θ̄12 ≡ {θ ∈ Θ12 | θ−12 ≤

θ ≤ δ̄} where θ−12 ≡ inf Θ12, θ
+
12 ≡ supΘ12, and δ̄ ∈ (θ−12, θ

+
12) such that:

∫
Θ22∪{θ∈Θ12|θ−12≤θ≤δ̄}

(u(θ, y1)− u(θ, y2))f(θ)dθ = 0. (8)

By starting from region Θ̄12 and continuously decreasing the upper bound of that region, call the

new region Θ̃12, region Θ12\Θ̃12 continuously expands, and finally converges to disclosure set X+.

Hence, for any U ′ ∈ [U−, U+], we can find an appropriate set X ′ ⊇ X− through the process of

expansion such that if the receiver undertakes the first-best action yR(θ) on X ′, then her ex ante

expected utility is U ′. We can easily show that this partition can be supported in an equilibrium.

This expansion argument can be easily extended to the situation where disclosure sets X+

and X− are included in different disagreement regions. We assume that E[u(θ, y1)|Θ12 ∪ Θ21] ≥

E[u(θ, y2)|Θ12 ∪ Θ21] and Case (3). That is, X+ = Θ12 and X− = Θ21\Θ̄21. In this scenario,

there exists a threshold Û ∈ [U−, U+] such that ex ante expected utility Û is supported by both

disclosure sets X̂21 ⊆ Θ21 and X̂12 ⊆ Θ12. Define X̂21 = Θ21 and X̂12 = Θ12\Θ̂12 where Θ̂12 ≡

{θ ∈ Θ12|θ−12 ≤ θ ≤ δ̂} for δ̂ ∈ [θ−12, θ
+
12) such that:

∫
(Θ12\{θ∈Θ12|θ−12≤θ≤δ̂})∪Θ21

(u(θ, y1)− u(θ, y2))f(θ)dθ = 0. (9)

It is easily shown that ex ante expected utility associated with disclosure sets X̂21 and X̂12 coincides,

and these sets are supported in equilibrium. Hence, we can divide interval [U−, U+] into two

subintervals [U−, Û ] and [Û , U+], and separately apply the expansion argument to each interval.

In other words, for any value U ∈ [U−, Û ], we can find an appropriate set X where X̂21 ⊇ X ⊇ X−

and the associated ex ante expected utility is U . Furthermore, for any value U ′ ∈ [Û , U+], we can

also find an appropriate set X ′ where X+ ⊇ X ′ ⊇ X̂12 and the associated ex ante expected utility

is U ′. Therefore, we can conclude that [U−, U+] is the set of equilibrium ex ante expected utility

of the receiver.
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4 Discussion

4.1 Full disclosure and full pooling equilibria

The characterization of the equilibrium set can be extended to the environment where there exists

full disclosure or full pooling equilibrium. So far, we have focused on the environment where these

extreme equilibria do not exist; that is, any Θij has positive measure. However, as long as the

receiver’s action is binary and any information is fully certifiable, the same characterization is still

valid even in the environment where the full disclosure or full pooling equilibrium exists; that is,

some Θij has zero measure. In other words, the ex ante expected utility in the full disclosure and full

pooling equilibria is equivalent to that obtained in equilibria specified in the previous propositions.

Hence, by the same argument, Theorem 1 can extend to the environment where these extreme

equilibria exist.

Corollary 1 Suppose that some Θij has zero measure, i.e., there exists either full disclosure or

full pooling equilibrium. Then, Theorem 1 holds in this modified environment.

4.2 Mixed strategy equilibria

The characterization of the equilibrium set can be partially extended to the scenario where the

players could adopt mixed strategies. We put the following additional restrictions.

Assumption 1

(i) Suppose that E[u(θ, y1)|Θ12 ∪Θ21] ̸= E[u(θ, y2)|Θ12 ∪Θ21] holds.

(ii) Suppose that either E[u(θ, y1)|Θ11 ∪ Θ21] ≥ E[u(θ, y2)|Θ11 ∪ Θ21] or E[u(θ, y1)|Θ22 ∪ Θ12] ≤

E[u(θ, y2)|Θ22 ∪Θ12] holds.
15

Corollary 2 Suppose that Assumption 1 holds. Then, Theorem 1 holds.

The outline of the proof is as follows. Under Assumption 1, we can show that the ex ante

expected utility of any mixed strategy equilibrium where the receiver adopts a mixed strategy is

bounded by the bounds characterized so far. That is, for any such mixed strategy equilibrium, there

exists a pure strategy equilibrium that is payoff equivalent to that mixed strategy equilibrium.

Hence, without loss of generality, we can restrict our attention to equilibria where the receiver

adopts pure strategies. Furthermore, note that the proofs in the propositions and the theorem

15This assumption excludes Case (4) in the characterization of the least informative equilibrium.
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do not depend on whether the sender adopts pure strategies. Therefore, once we can show the

redundancy of considering the receiver’s mixed strategies, all proofs go through, and then Corollary

2 is obtained.

5 Conclusion

In this paper, we have analyzed a persuasion game where the receiver’s alternatives are binary.

Especially, we have focused on the scenario where there exists neither full disclosure nor full pooling

equilibrium and have characterized the set of pure strategy in terms of informativeness measured by

ex ante expected utility of the receiver. In other words, we have characterized the informativeness

of each equilibrium. The set is characterized by the most and least informative equilibria, and we

have shown that any value between the bounds can be supported in equilibrium with transparent

construction of the associated equilibrium. That is, there are continuum equilibria. The results

depend on the restriction to a setting with binary actions, and that extension is left for the future

work.

Appendix: Proofs

Proof of Proposition 1

Lemma 1 In any equilibrium, µ(σ(θ)) = yR(θ) for all θ ∈ Θ11 ∪Θ22.

Proof of Lemma 1. Suppose, by contrast, that there exists an equilibrium (σ, µ;P), in which

there exists a type θ ∈ Θ11 ∪ Θ22 such that µ(σ(θ)) ̸= yR(θ). However, this type has the same

preference as the receiver, and he can prove his true type by sending the message m = {θ}. So, this

message induces the sender’s preferred action; that is, it is a profitable deviation for him, which is

a contradiction. Therefore, these types must induce preferred actions in any equilibrium. ■

Proof of Proposition 1. First, show that there exists no full disclosure equilibrium. Suppose, by

contrast, that there exists a full disclosure equilibrium (σ∗, µ∗;P∗). Because Θ12 ̸= ∅ and Θ21 ̸= ∅,

pick arbitrary types θ ∈ Θ12 and θ′ ∈ Θ21. Note that the type θ strictly prefers action y2 to action

y1, and the type θ′ strictly prefers action y1 to action y2. Because (σ∗, µ∗;P∗) is a full disclosure

equilibrium, µ∗(σ∗(θ)) = y1 and µ∗(σ∗(θ′)) = y2. However, there is no incentive-compatible reaction

to message {θ, θ′} ∈ M(θ)∩M(θ′); if µ∗({θ, θ′}) = y1, then type θ′ has an incentive to deviate, and

if µ∗({θ, θ′}) = y2, then type θ has an incentive to deviate, which is a contradiction. Thus, there
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exists no full disclosure equilibrium.16

Next, show that there exists no full pooling equilibrium. Suppose, by contrast, that there exists

a full pooling equilibrium (σ∗, µ∗;P∗). That is, σ∗(θ) = Θ for any θ ∈ Θ. However, by Lemma 1,

types in region Θ11 ∪ Θ22 have an incentive to deviate to the full-disclosure message, which is a

contradiction. Therefore, there exists no full pooling equilibrium. ■

Proof of Proposition 2

We assume that E[u(θ, y1)|Θ12 ∪ Θ21] ≥ E[u(θ, y2)|Θ12 ∪ Θ21] without loss of generality. Hence,

µ+(Θ12 ∪ Θ21) = y1. We omit the characterizations of PBEs and the related proofs. These are

in the Supplementary Appendix.17 We show that equilibrium (σ+, µ+;P+) attains the maximum

ex ante expected utility to the receiver. Suppose, by contrast, that there exists an equilibrium

(σ̂, µ̂; P̂) such that:

E[u(θ, µ̂(σ̂(θ)))] > E[u(θ, µ+(σ+(θ)))]. (10)

By (10) and Lemma 1:

E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22)

+E[u(θ, µ̂(σ̂(θ)))|Θ0]Pr(Θ0) + E[u(θ, µ̂(σ̂(θ)))|Θ12 ∪Θ21]Pr(Θ12 ∪Θ21)

> E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22)

+E[u(θ, µ+(σ+(θ)))|Θ0]Pr(Θ0) + E[u(θ, y1)|Θ12 ∪Θ21]Pr(Θ12 ∪Θ21),

or:

E[u(θ, µ̂(σ̂(θ)))|Θ12 ∪Θ21] > E[u(θ, y1)|Θ12 ∪Θ21]. (11)

Define W ≡ {θ ∈ Θ21|µ̂(σ̂(θ)) = y2}, and Z ≡ {θ ∈ Θ12|µ̂(σ̂(θ)) = y1}.

Claim 1 If equation (11) holds, then W ̸= ∅.

Proof of Claim 1. Suppose, by contrast, that W = ∅. That is, for any θ ∈ Θ21, µ̂(σ̂(θ)) = y1. By

(11):

E[u(θ, µ̂(σ̂(θ)))|Θ12]Pr(Θ12|Θ12 ∪Θ21) + E[u(θ, µ̂(σ̂(θ)))|Θ21]Pr(Θ21|Θ12 ∪Θ21)

> E[u(θ, y1)|Θ12]Pr(Θ12|Θ12 ∪Θ21) + E[u(θ, y1)|Θ21]Pr(Θ21|Θ12 ∪Θ21).

16It is worthwhile to mention that this part of the proof is valid even if mixed strategies are allowed.
17Supplementary Appendix is available from the author’s homepage, http://smiura.web.fc2.com/files/

persuasion_suppapp.pdf.
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From the hypothesis:

E[u(θ, µ̂(σ̂(θ)))|Θ12]Pr(Θ12|Θ12 ∪Θ21) + E[u(θ, y1)|Θ21]Pr(Θ21|Θ12 ∪Θ21)

> E[u(θ, y1)|Θ12]Pr(Θ12|Θ12 ∪Θ21) + E[u(θ, y1)|Θ21]Pr(Θ21|Θ12 ∪Θ21),

or:

E[u(θ, µ̂(σ̂(θ)))|Θ12] > E[u(θ, y1)|Θ12]. (12)

However, as long as θ ∈ Θ12, u(θ, y1) > u(θ, y2). Hence, E[u(θ, y1)|Θ12] ≥ E[u(θ, µ̂(σ̂(θ)))|Θ12],

which is a contradiction to (12). □

Claim 2 If equation (11) holds, then Z ̸= ∅.

Proof of Claim 2. Suppose, by contrast, that Z = ∅; that is, for all θ ∈ Θ12, µ̂(σ̂(θ)) = y2. By (11),

the hypothesis and the definition of W :

E[u(θ, y2)|Θ12]Pr(Θ12|Θ12 ∪Θ21) + E[u(θ, y2)|W ]Pr(W |Θ12 ∪Θ21)

+E[u(θ, y1)|Θ12\W ]Pr(Θ21\W |Θ12 ∪Θ21)

> E[u(θ, y1)|Θ12]Pr(Θ12|Θ12 ∪Θ21) + E[u(θ, y1)|W ]Pr(W |Θ12 ∪Θ21)

+E[u(θ, y1)|Θ21\W ]Pr(Θ21\W |Θ12 ∪Θ21),

or:

E[u(θ, y2)|Θ12]Pr(Θ12|Θ12 ∪Θ21) + E[u(θ, y2)|W ]Pr(W |Θ12 ∪Θ21)

> E[u(θ, y1)|Θ12]Pr(Θ12|Θ12 ∪Θ21) + E[u(θ, y1)|W ]Pr(W |Θ12 ∪Θ21). (13)

Because E[u(θ, y1)|Θ12 ∪Θ21] ≥ E[u(θ, y2)|Θ12 ∪Θ21]:

E[u(θ, y1)|Θ12]Pr(Θ12|Θ12 ∪Θ21) + E[u(θ, y1)|W ]Pr(W |Θ12 ∪Θ21)

+E[u(θ, y1)|Θ21\W ]Pr(Θ21\W |Θ12 ∪Θ21)

≥ E[u(θ, y2)|Θ12]Pr(Θ12|Θ12 ∪Θ21) + E[u(θ, y2)|W ]Pr(W |Θ12 ∪Θ21)

+E[u(θ, y2)|Θ21\W ]Pr(Θ21\W |Θ12 ∪Θ21). (14)
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By (13) and (14), the following condition must hold:

E[u(θ, y1)|Θ21\W ]Pr(Θ21\W |Θ12 ∪Θ21) > E[u(θ, y2)|Θ21\W ]Pr(Θ21\W |Θ12 ∪Θ21).

If Pr(Θ21\W |Θ12 ∪ Θ21) = 0, then, the above inequality does not hold, which is a contradiction.

Hence, Pr(Θ21\W |Θ12 ∪ Θ21) ̸= 0. That is, E[u(θ, y1)|Θ21\W ] > E[u(θ, y2)|Θ21\W ]. However,

u(θ, y2) > u(θ, y1) for any θ ∈ Θ21. Hence, E[u(θ, y2)|Θ21\W ] > E[u(θ, y1)|Θ21\W ], which is a

contradiction. □

By Claims 1 and 2, to hold (11), W ̸= ∅ and Z ̸= ∅; that is, there exists θ ∈ Θ12 and θ′ ∈ Θ21

such that µ̂(σ̂(θ)) = y1 and µ̂(σ̂(θ′)) = y2. However, there is no incentive-compatible reaction to

message {θ, θ′} ∈ M(θ) ∩ M(θ′); if µ̂({θ, θ′}) = y1, then type θ′ has an incentive to deviate, and

if µ̂({θ, θ′}) = y2, then type θ has an incentive to deviate, which is a contradiction. Therefore, an

equilibrium satisfying (10) cannot exist; that is, equilibrium (σ+, µ+;P+) is most informative. ■

Proof of Proposition 3

Define X ≡ {θ ∈ Θ12 ∪ Θ21|µ(σ(θ)) = yR(θ)} given an equilibrium (σ, µ;P). This is the set of

states in the disagreement regions where the receiver undertakes her preferred action yR(θ).

Lemma 2 Suppose that either E[u(θ, y1)|Θ11 ∪ Θ21] < E[u(θ, y2)|Θ11 ∪ Θ21] or E[u(θ, y1)|Θ22 ∪

Θ12] > E[u(θ, y2)|Θ22 ∪ Θ12]. Then, for any equilibrium (σ, µ;P), X ̸= ∅, and either X ⊆ Θ12 or

X ⊆ Θ22.

Proof of Lemma 2. Suppose, by contrast, that there exists an equilibrium (σ̃, µ̃; P̃) such that X̃ = ∅.

That is, for all θ ∈ Θ12 ∪ Θ21, µ̃(σ̃(θ)) ̸= yR(θ). In the equilibrium, types in region Θ12 are never

pooling with types in Θ21; otherwise, there exists a type θ ∈ Θ12 ∪Θ21 such that µ̃(σ̃(θ)) = yR(θ).

Hence, by Lemma 1, it is necessary that (i) each type in region Θ12 must be pooling with some

types in region Θ22 ∪Θ0 with inducing action y2; and (ii) each type in region Θ21 must be pooling

with some types in region Θ11 ∪Θ0 with inducing action y1.

Claim 3 If condition (i) (resp. (ii)) holds, then E[u(θ, y1)|Θ22∪Θ12∪Θ0] ≤ E[u(θ, y2)|Θ22∪Θ12∪

Θ0] (resp. E[u(θ, y1)|Θ11 ∪Θ21 ∪Θ0] ≥ E[u(θ, y2)|Θ11 ∪Θ21 ∪Θ0]) must hold.

Proof of Claim 3. Suppose that condition (i) holds. Then there must exist a partition Π of region

Θ22∪Θ12∪Θ0 such that: (a) for any P ∈ Π, if P ∩Θ12 ̸= ∅, then either P ∩Θ22 ̸= ∅ or P ∩Θ0 ̸= ∅;

and (b) E[u(θ, y1)|P ] ≤ E[u(θ, y2)|P ] for any P ∈ Π. Suppose that Π is countable. By properties
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(a) and (b) of partition Π, E[u(θ, y1)|P ]Pr(P |Θ22∪Θ12∪Θ0) ≤ E[u(θ, y2)|P ]Pr(P |Θ22∪Θ12∪Θ0)

for any P ∈ Π. Then:

E[u(θ, y1)|Θ22 ∪Θ12 ∪Θ0] =
∑
P∈Π

E[u(θ, y1)|P ]Pr(P |Θ22 ∪Θ12 ∪Θ0)

≤
∑
P∈Π

E[u(θ, y2)|P ]Pr(P |Θ22 ∪Θ12 ∪Θ0)

= E[u(θ, y2)|Θ22 ∪Θ12 ∪Θ0].

For the scenario where partition Π is uncountable, we can show the claim by the similar argu-

ment. Furthermore, by using the same argument, we can show that condition (ii) implies that

E[u(θ, y1)|Θ11 ∪Θ21 ∪Θ0] ≥ E[u(θ, y2)|Θ11 ∪Θ21 ∪Θ0]. □

By Claim 3 and Pr(Θ0) = 0, we can conclude that E[u(θ, y1)|Θ22∪Θ12] ≤ E[u(θ, y2)|Θ22∪Θ12]

and E[u(θ, y1)|Θ11 ∪ Θ21] ≥ E[u(θ, y2)|Θ11 ∪ Θ21] must hold. However, this contradicts with

the hypothesis that: E[u(θ, y1)|Θ11 ∪ Θ21] < E[u(θ, y2)|Θ11 ∪ Θ21] or E[u(θ, y1)|Θ22 ∪ Θ12] >

E[u(θ, y2)|Θ22 ∪Θ12]. Therefore, subset X should be nonempty for any equilibrium.

Next, suppose, by contrast, that there exists an equilibrium (σ̂, µ̂; P̂) such that X̂ ∩ Θ12 ̸= ∅

and X̂ ∩ Θ21 ̸= ∅. Choose θ ∈ X̂ ∩ Θ12 and θ′ ∈ X̂ ∩ Θ21 arbitrarily. However, there is no

incentive-compatible reaction to message {θ, θ′} ∈ M(θ) ∩ M(θ′); if µ̂({θ, θ′}) = y1, then type θ′

has an incentive to deviate, and if µ̂({θ, θ′}) = y2, then type θ has an incentive to deviate, which

is a contradiction. Therefore, either X ⊆ Θ12 or X ⊆ Θ21 must hold. ■

Proof of Proposition 3. We omit the characterizations of PBE (σ−, µ−;P−) and the related proofs.

These are in the Supplementary Appendix. Now, we show that this equilibrium attains the mini-

mum ex ante expected utility to the receiver in each case. The proof is constructed by the following

lemmas.

Lemma 3 Equilibrium (σ−, µ−;P−) specified by (3) is least informative in Case (1).

Proof of Lemma 3. It is obvious that equilibrium (σ−, µ−;P−) is the least informative equilibrium

because the first-best action yR(θ) cannot be induced in entire disagreement region Θ12 ∪Θ21. ■

Lemma 4 Equilibrium (σ−, µ−;P−) specified by (4) is least informative in Case (2).

Proof of Lemma 4. This lemma is shown by the following steps.

Step 1: Construction of subset Θ̄12.

18



Define θ−12 ≡ inf Θ12 and θ+12 ≡ supΘ12, and then define Θδ
12 ≡ {θ ∈ Θ12 ∪ {θ−12, θ

+
12}|θ

−
12 ≤ θ ≤ δ}

for δ ∈ [θ−12, θ
+
12]. Define the following function:

G(δ) ≡
∫
Θ22∪Θδ

12

(u(θ, y1)− u(θ, y2))f(θ)dθ.

It is clear that G(·) is continuous in δ. Note that G(θ+12) = E[u(θ, y1)−u(θ, y2)|Θ22 ∪Θ12]Pr(Θ22 ∪

Θ12). Because E[u(θ, y1)|Θ22 ∪ Θ12] > E[u(θ, y2)|Θ22 ∪ Θ12] and Pr(Θ22 ∪ Θ12) > 0, G(θ+12) > 0.

Also note G(θ−12) = E[u(θ, y1) − u(θ, y2)|Θ22]Pr(Θ22). Because u(θ, y1) < u(θ, y2) for any θ ∈ Θ22

and Pr(Θ22) > 0, G(θ−12) < 0. Therefore, from the intermediate value theorem, there exists

δ̄ ∈ (θ−12, θ
+
12) such that G(δ̄) = 0. That is, E[u(θ, y1) − u(θ, y2)|Θ22 ∪ Θδ̄

12]Pr(Θ22 ∪ Θδ̄
12) = 0.

Because Pr(Θ22 ∪ Θδ̄
12) > 0, that is equivalent to E[u(θ, y1)|Θ22 ∪ Θδ̄

12] = E[u(θ, y2)|Θ22 ∪ Θδ̄
12].

Define Θ̄12 ≡ Θδ̄
12.

Because of Lemma 2, it is sufficient to show that: (i) there exists no equilibrium (σ′, µ′;P ′) with

X ′ ⊆ Θ12 such that E[u(θ, µ′(σ′(θ)))] < E[u(θ, µ−(σ−(θ)))]; and (ii) there exists no equilibrium

(σ′′, µ′′;P ′′) with X ′′ ⊆ Θ21 such that E[u(θ, µ′′(σ′′(θ)))] < E[u(θ, µ−(σ−(θ)))].

Step 2: Show Condition (i).

Let (σ′, µ′;P ′) be an arbitrary equilibrium with X ′ ⊆ Θ12. Define Θ′
12 ≡ Θ12\X ′. By Lemma 2,

X ′ ̸= ∅ and X ′ ∩ Θ21 = ∅. Hence, we know that: for any equilibrium (σ′, µ′;P ′) with X ′ ⊆ Θ12,

(a) µ′(σ′(θ)) = y1 for any θ ∈ Θ11 ∪Θ21 ∪ (Θ12\Θ′
12); and (b) µ′(σ′(θ)) = y2 for any θ ∈ Θ22 ∪Θ′

12.

Let (σ̂, µ̂; P̂) be another equilibrium with X̂ ⊆ Θ12, and Θ̂12 ≡ Θ12\X̂. Then, E[u(θ, µ′(σ′(θ)))] ≤

E[u(θ, µ̂(σ̂(θ)))] is equivalent to:

E[u(θ, y2)|Θ′
12]Pr(Θ′

12) + E[u(θ, y1)|Θ12\Θ′
12]Pr(Θ12\Θ′

12)

≤ E[u(θ, y2)|Θ̂12]Pr(Θ̂12) + E[u(θ, y1)|Θ12\Θ̂12]Pr(Θ12\Θ̂12) (15)

The following claim represents another restriction that equilibrium (σ′, µ′;P ′) must satisfy.

Claim 4 E[u(θ, y1)|Θ22 ∪Θ′
12] ≤ E[u(θ, y2)|Θ22 ∪Θ′

12].

Proof of Claim 4. Suppose, by contrast, that E[u(θ, y1)|Θ22∪Θ′
12] > E[u(θ, y2)|Θ22∪Θ′

12]. Note that

Θ′
12 = {θ ∈ Θ12|µ′(σ′(θ)) = y2}. By the hypothesis, some types in set Θ′

12 must be pooling with

types in region Θ21 with inducing action y2; otherwise, i.e., if each type in region Θ′
12 is pooling with

some types in region Θ22 ∪Θ0 with inducing y2, then E[u(θ, y1)|Θ22 ∪Θ′
12] ≤ E[u(θ, y2)|Θ22 ∪Θ′

12]

by the similar arguments in Claim 3, which is a contradiction to the hypothesis.
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Let θ′ ∈ Θ21 be the type that is pooling with some type in Θ′
12 and inducing action y2, i.e.,

µ′(σ′(θ′)) = y2 That is, θ
′ ∈ X ′∩Θ21. However, because E[u(θ, y1)|Θ22∪Θ12] > E[u(θ, y2)|Θ22∪Θ12]

and X ′ ⊆ Θ12, X
′ ∩Θ21 = ∅ by Lemma 2, which is a contradiction. □

By (15) and Claim 4, in order to show Condition (i), it is sufficient to show that Θ̄12 is a solution

of the following optimization problem:

min
Θ′

12⊆Θ12

E[u(θ, y2)|Θ′
12]Pr(Θ′

12) + E[u(θ, y1)|Θ12\Θ′
12]Pr(Θ12\Θ′

12) (16)

subject to E[u(θ, y1)|Θ22 ∪Θ′
12] ≤ E[u(θ, y2)|Θ22 ∪Θ′

12].

Note that the objective function of (16) is decreasing in the probability measure on Θ′
12 because

u(θ, y1) > u(θ, y2) for any θ ∈ Θ12.

Claim 5 At the solution of optimization problem (16), the constraint is binding.

Proof of Claim 5. Suppose, by contrast, that Θ̂12 is a solution of (16) but E[u(θ, y1)|Θ22 ∪ Θ̂12] <

E[u(θ, y2)|Θ22 ∪ Θ̂12]. Because of the continuity of the utility function, we can find Θ̃12 ⊃ Θ̂12 such

that E[u(θ, y1)|Θ22 ∪ Θ̃12] < E[u(θ, y2)|Θ22 ∪ Θ̃12] and Pr(Θ̃12) > Pr(Θ̂12). However, because of

the monotonicity of the objective function:

E[u(θ, y2)|Θ̃12]Pr(Θ̃12) + E[u(θ, y1)|Θ12\Θ̃12]Pr(Θ12\Θ̃12)

< E[u(θ, y2)|Θ̂12]Pr(Θ̂12) + E[u(θ, y1)|Θ12\Θ̂12]Pr(Θ12\Θ̂12)

This is a contradiction to that Θ̂12 is a solution of (16). □

Now, we show that Θ̄12 is a solution to the problem. The following claim guarantees that subset

Θ′
12 binding the constraint becomes a solution of the problem.

Claim 6 If Θ′
12 is a subset of region Θ12 such that E[u(θ, y1)|Θ22 ∪ Θ′

12] = E[u(θ, y2)|Θ22 ∪ Θ′
12],

then Θ′
12 is a solution of the optimization problem (16).

Proof of Claim 6. Suppose that subset Θ′
12 of region Θ12 satisfies E[u(θ, y1)|Θ22∪Θ′

12] = E[u(θ, y2)|Θ22∪

Θ′
12]. Then, by Claim 5, subset Θ′

12 is a candidate of the solution. Now, it is sufficient to show that

for any subset of region Θ12 binding the constraint, the value of the objective function is identical.

Let Θ′′
12 be another subset of region Θ12 satisfying E[u(θ, y1)|Θ22∪Θ′′

12] = E[u(θ, y2)|Θ22∪Θ′′
12]. Be-

cause E[u(θ, y1)|Θ22∪Θ′
12] = E[u(θ, y2)|Θ22∪Θ′

12], E[u(θ, y2)−u(θ, y1)|Θ22∪Θ′
12]Pr(Θ22∪Θ′

12) = 0,
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or still:

E[u(θ, y2)− u(θ, y1)|Θ22]Pr(Θ22) + E[u(θ, y2)− u(θ, y1)|Θ′
12]Pr(Θ′

12) = 0. (17)

Similarly, E[u(θ, y1)|Θ22 ∪Θ′′
12] = E[u(θ, y2)|Θ22 ∪Θ′′

12] implies:

E[u(θ, y2)− u(θ, y1)|Θ22]Pr(Θ22) + E[u(θ, y2)− u(θ, y1)|Θ′′
12]Pr(Θ′′

12) = 0. (18)

By using (17) and (18), we obtain E[u(θ, y2)−u(θ, y1)|Θ′
12]Pr(Θ′

12) = E[u(θ, y2)−u(θ, y1)|Θ′′
12]Pr(Θ′

12).

Then:

E[u(θ, y2)− u(θ, y1)|Θ′
12]Pr(Θ′

12) + E[u(θ, y1)|Θ12]Pr(Θ12)

= E[u(θ, y2)− u(θ, y1)|Θ′′
12]Pr(Θ′′

12) + E[u(θ, y1)|Θ12]Pr(Θ12) (19)

Note that:

E[u(θ, y2)− u(θ, y1)|Θ′
12]Pr(Θ′

12) + E[u(θ, y1)|Θ12]Pr(Θ12)

= E[u(θ, y2)|Θ′
12]Pr(Θ′

12)− E[u(θ, y1)|Θ′
12]Pr(Θ′

12)

+E[u(θ, y1)|Θ′
12]Pr(Θ′

12) + E[u(θ, y1)|Θ12\Θ′
12]Pr(Θ12\Θ′

12)

= E[u(θ, y2)|Θ′
12]Pr(Θ′

12) + E[u(θ, y1)|Θ12\Θ′
12]Pr(Θ12\Θ′

12).

Similarly,

E[u(θ, y2)− u(θ, y1)|Θ′′
12]Pr(Θ′′

12) + E[u(θ, y1)|Θ12]Pr(Θ12)

= E[u(θ, y2)|Θ′′
12]Pr(Θ′′

12) + E[u(θ, y1)|Θ12\Θ′′
12]Pr(Θ12\Θ′′

12).

Therefore, by (19), we can conclude that the values of the objective function evaluated under Θ′
12

and Θ′′
12 are identical. □

Thus, by Claim 6, subset Θ̄12 is a solution of the optimization problem (16). That is, any

equilibrium with X ⊆ Θ12 attains weakly better ex ante expected utility to the receiver than

equilibrium (σ−, µ−;P−).

Step 3: Show Condition (ii).
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Suppose, by contrast, that there exists an equilibrium (σ′′, µ′′;P ′′) with X ′′ ⊆ Θ21 such that

E[u(θ, µ′′(σ′′(θ)))] < E[u(θ, µ−(σ−(θ)))]. By Lemma 2, X ′′ ∩ Θ12 = ∅. Hence, for all θ ∈ Θ12,

µ′′(σ′′(θ)) = y2. That is, each type in region Θ12 must be pooling with types in region Θ22∪X ′′∪Θ0.

Then, we can partition region Θ12 into Θ1
12,Θ

2
12 and Θ3

12 given by:

Θ1
12 ≡ {θ ∈ Θ12|θ is pooling with types in Θ22}

Θ2
12 ≡ {θ ∈ Θ12|θ is pooling with types in X ′′ ⊆ Θ21}

Θ3
12 ≡ {θ ∈ Θ12|θ is pooling with types in Θ0}

Note that Pr(Θ3
12) = 0 because u(θ, y1) > u(θ, y2) for any θ ∈ Θ12 and Pr(Θ0) = 0. Then, we

can say that Pr(Θ2
12) > 0; otherwise, almost all types in region Θ12 must be pooling with types in

region Θ22, and then E[u(θ, y1)|Θ22∪Θ12] ≤ E[u(θ, y2)|Θ22∪Θ12] must hold by the similar argument

in Claim 3, which is impossible. Hence, Pr(X ′′) > 0 because Pr(Θ2
12) > 0 and u(θ, y1) > u(θ, y2)

for any θ ∈ Θ12.

By the similar argument in Claim 3, we obtain:

E[u(θ, y1)|Θ22 ∪Θ1
12] ≤ E[u(θ, y2)|Θ22 ∪Θ1

12]; (20)

E[u(θ, y1)|X ′′ ∪Θ2
12] ≤ E[u(θ, y2)|X ′′ ∪Θ2

12]. (21)

Multiplying both sides of (20) and (21) by Pr(Θ22 ∪Θ1
12|Θ22 ∪Θ12 ∪X ′′) and Pr(X ′′ ∪Θ2

12|Θ22 ∪

Θ12 ∪X ′′), respectively, and combining these equations yields:

E[u(θ, y1)|Θ22 ∪Θ12 ∪X ′′] ≤ E[u(θ, y2)|Θ22 ∪Θ12 ∪X ′′]. (22)

Claim 7 Let (σ, µ;P) be an equilibrium with X ⊆ Θ12 and Pr(X) ̸= 0, and (σ̃, µ̃, P̃) be an

equilibrium with X̃ ⊆ Θ21 and Pr(X̃) ̸= 0. Then, E[u(θ, µ(σ(θ)))] ≥ E[u(θ, µ̃(σ̃(θ)))] is equivalent

to E[u(θ, y1)|X ∪ X̃] ≥ E[u(θ, y2)|X ∪ X̃].
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Proof of Claim 7. Note that:

E[u(θ, µ(σ(θ)))] = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|X]Pr(X)

+E[u(θ, y2)|Θ12\X]Pr(Θ12\X) + E[u(θ, y1)|X̃]Pr(X̃)

+E[u(θ, y1)|Θ21\X̃]Pr(Θ21\X̃).

E[u(θ, µ̃(σ̃(θ)))] = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y2)|X]Pr(X)

+E[u(θ, y2)|Θ12\X]Pr(Θ12\X) + E[u(θ, y2)|X̃]Pr(X̃)

+E[u(θ, y1)|Θ21\X̃]Pr(Θ21\X̃).

Then, E[u(θ, µ(σ(θ)))] ≥ E[u(θ, µ̃(σ̃(θ)))] is equivalent to:

E[u(θ, y1)|X]Pr(X) + E[u(θ, y1)|X̃]Pr(X̃) ≥ E[u(θ, y2)|X]Pr(X) + E[u(θ, y2)|X̃]Pr(X̃)

⇔ E[u(θ, y1)|X ∪ X̃]Pr(X ∪ X̃) ≥ E[u(θ, y2)|X ∪ X̃]Pr(X ∪ X̃)

⇔ E[u(θ, y1)|X ∪ X̃] ≥ E[u(θ, y2)|X ∪ X̃]. □

Because Pr(Θ12\Θ̄12) > 0 and Pr(X ′′) > 0, by Claim 7, the hypothesis is equivalent to:

E[u(θ, y1)|(Θ12\Θ̄12) ∪X ′′] > E[u(θ, y2)|(Θ12\Θ̄12) ∪X ′′]. (23)

Moreover, by the definition of Θ̄12:

E[u(θ, y1)|Θ22 ∪ Θ̄12] = E[u(θ, y2)|Θ22 ∪ Θ̄12]. (24)

Multiplying both sides of (23) and (24) by Pr((Θ12\Θ̄12) ∪ X ′′|Θ22 ∪ Θ12 ∪ X ′′) and Pr(Θ22 ∪

Θ̄12|Θ22 ∪Θ12 ∪X ′′), respectively, and combining the results yields:

E[u(θ, y1)|Θ22 ∪Θ12 ∪X ′′] > E[u(θ, y2)|Θ22 ∪Θ12 ∪X ′′]. (25)

However equations (22) and (25) are contradictory. Therefore, such an equilibrium (σ′′, µ′′;P ′′)

never exist. That is, any equilibrium with X ⊆ Θ21 attains weakly better ex ante expected utility

to the receiver than equilibrium (σ−, µ−;P−). By Conditions (i) and (ii), we can conclude that

equilibrium (σ−, µ−;P−) is one of the least informative equilibria. ■

Lemma 5 Equilibrium (σ−, µ−;P−) specified by (5) is least informative in Case (3).
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Proof of Lemma 5. This is the mirror case of Case (2), so we omit the proof. ■

Lemma 6 Equilibrium (σ−, µ−;P−) specified by (6) is least informative in Case (4).

Proof of Lemma 6. There are the following two cases to be considered:

Case (4)-1: E[u(θ, y1)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)] ≥ E[u(θ, y2)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)].

Note that in equilibrium (σ−, µ−;P−):

µ−(σ−(θ)) =


y1 if θ ∈ Θ11 ∪Θ21 ∪ (Θ12\Θ̄12)

y2 if θ ∈ Θ22 ∪ Θ̄12

yR(θ) if θ ∈ Θ0

(26)

That is, the ex ante expected utility of the receiver in this equilibrium is equivalent to that obtained

in equilibrium specified by (4). Then, because E[u(θ, y1)|Θ22 ∪Θ12] > E[u(θ, y2)|Θ22 ∪Θ12] holds,

the same proof used in Lemma 4 is still valid in this case. Therefore, we can say that equilibrium

(σ−, µ−;P−) is least informative in Case (4)-1.

Case 2: E[u(θ, y1)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)] < E[u(θ, y2)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)].

Unlike Case (4)-1, note that in equilibrium (σ−, µ−;P−) in Case (4)-2:

µ−(σ−(θ)) =


y1 if θ ∈ Θ11 ∪ Θ̄21

y2 if θ ∈ Θ22 ∪Θ12 ∪ (Θ21\Θ̄21)

yR(θ) if θ ∈ Θ0

(27)

That is, the ex ante expected utility of the receiver in this equilibrium is equivalent to that obtained

in equilibrium specified by (5). Then, because E[u(θ, y1)|Θ11 ∪Θ21] < E[u(θ, y2)|Θ11 ∪Θ21] holds,

the same proof used in Lemma 5 is still valid in this case. Therefore, we can say that equilibrium

(σ−, µ−;P−) is least informative in Case (4)-2. ■

By Lemmas 3 to 6, Proposition 3 is proven. ■

Proof of Theorem 1

Because U− and U+ are the bounds of the receiver’s ex ante expected utility, for any equilibrium,

the receiver’s ex ante expected utility in equilibrium must be in the interval [U−, U+]. Thus, the

necessary part is obvious; it remains to prove sufficiency. Hereafter, without loss of generality, we
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assume that E[u(θ, y1)|Θ12 ∪Θ21] ≥ E[u(θ, y2)|Θ12 ∪Θ21].

Case (1). Define the following function:

H(δ) ≡
∫
Θδ

12

(u(θ, y2)− u(θ, y1))f(θ)dθ +

∫
Θ12

u(θ, y1)f(θ)dθ.

Clearly, this function is continuous in δ. Note that by Propositions 2 and 3, X+ = Θ12 and X− = ∅.

Hence:

U+ = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22)

+E[u(θ, y1)|Θ12]Pr(Θ12) + E[u(θ, y1)|Θ21]Pr(Θ21)

= E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|Θ21]Pr(Θ21) +H(θ−12).

U− = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22)

+E[u(θ, y2)|Θ12]Pr(Θ12) + E[u(θ, y1)|Θ21]Pr(Θ21)

= E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|Θ21]Pr(Θ21) +H(θ+12).

We fix U ∈ [U−, U+] arbitrarily. From the intermediate value theorem, there exists a δU ∈ [θ−12, θ
+
12]

such that:

U = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|Θ21]Pr(Θ21) +H(δU )

= E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|Θ21]Pr(Θ21)

+E[u(θ, y2)|ΘδU
12 ]Pr(ΘδU

12 ) + E[u(θ, y1)|Θ12\ΘδU
12 ]Pr(Θ12\ΘδU

12 ).

We can show that there exists an equilibrium (σU , µU ;PU ) that supports the above partition:

σU (θ) =


Θ11 ∪Θ21 if θ ∈ Θ11 ∪Θ21

Θ22 ∪ΘδU
12 if θ ∈ Θ22 ∪ΘδU

12

{θ} if θ ∈ (Θ12\ΘδU
12 ) ∪Θ0

(28)

Note that:

• µU (Θ11 ∪Θ21) = y1 because of the assumption E[u(θ, y1)|Θ11 ∪Θ21] ≥ E[u(θ, y2)|Θ11 ∪Θ21];

• µU (Θ22 ∪ ΘδU
12 ) = y2; E[u(θ, y1)|Θ22 ∪ ΘδU

12 ] ≤ E[u(θ, y2)|Θ22 ∪ ΘδU
12 ] should hold because
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ΘδU
12 ⊆ Θ12, u(θ, y1) > u(θ, y2) for all θ ∈ Θ12 and E[u(θ, y1)|Θ22∪Θ12] ≤ E[u(θ, y2)|Θ22∪Θ12];

• µU ({θ}) = yR(θ).

Given σU and µU , only types in region Θ12\ΘδU
12 potentially have an incentive to deviate. Then,

let S(P(·|m)) = m ∩ (Θ12\ΘδU
12 ) if m ∩ (Θ12\ΘδU

12 ) ̸= ∅. The above off-the-equilibrium-path belief

prevents those types from deviation because any message available to the types induce action y1.

Therefore, the receiver’s ex ante expected utility under equilibrium (σU , µU ;PU ) is U .

Case (2). Note that by Proposition 3, X− = Θ12\Θ̄12. That is:

U− = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|Θ21]Pr(Θ21)

+E[u(θ, y2)|Θ̄12]Pr(Θ̄12) + E[u(θ, y1)|Θ12\Θ̄12]Pr(Θ12\Θ̄12)

= E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|Θ21]Pr(Θ21) +H(δ̄).

We fix U ∈ [U−, U+] arbitrarily. From the intermediate value theorem, there exists a δU ∈

[θ−12, δ̄] such that:

U = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|Θ21]Pr(Θ21) +H(δU )

= E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|Θ21]Pr(Θ21)

+E[u(θ, y2)|ΘδU
12 ]Pr(ΘδU

12 ) + E[u(θ, y1)|Θ12\ΘδU
12 ]Pr(Θ12\ΘδU

12 ).

The description of an equilibrium (σU , µU ;PU ) that supports the above partition of the state space

is equivalent to that specified in Case (1). Note that µU (Θ22 ∪ΘδU
12 ) = y2; E[u(θ, y1)|Θ22 ∪ΘδU

12 ] ≤

E[u(θ, y2)|Θ22 ∪ ΘδU
12 ] should hold because ΘδU

12 ⊆ Θ̄12, u(θ, y1) > u(θ, y2) for all θ ∈ Θ12 and

E[u(θ, y1)|Θ22 ∪ Θ̄12] = E[u(θ, y2)|Θ22 ∪ Θ̄12].

Case (3). We show the statement by the following steps:

Step 1: Characterization of the least informative equilibrium.

Let θ−21 ≡ inf Θ21 and θ+21 ≡ supΘ21. Define Θϵ
21 ≡ {θ ∈ Θ21 ∪ {θ−21, θ

+
21}|θ

−
21 ≤ θ ≤ ϵ} for

ϵ ∈ [θ−21, θ
+
21]. Then, define:

J(ϵ) ≡
∫
Θ11∪Θϵ

21

(u(θ, y2)− u(θ, y1))f(θ)dθ.

It is clear that function J(ϵ) is continuous in ϵ. Note that J(θ−21) = E[u(θ, y2)−u(θ, y1)|Θ11]Pr(Θ11).
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Because u(θ, y1) > u(θ, y2) for any θ ∈ Θ11 and Pr(Θ11) > 0, J(θ−21) < 0. Also, note that J(θ+12) =

E[u(θ, y2)−u(θ, y1)|Θ11∪Θ21]Pr(Θ11∪Θ21). Because E[u(θ, y1)|Θ11∪Θ21] < E[u(θ, y2)|Θ11∪Θ21]

and Pr(Θ11 ∪ Θ21) > 0, J(θ+21) > 0. Thus, by the intermediate value theorem, there exists ϵ̄ ∈

(θ−21, θ
+
21) such that J(ϵ̄) = 0. That is, we can say that E[u(θ, y1)|Θ11∪Θϵ̄

21] = E[u(θ, y2)|Θ11∪Θϵ̄
21].

Define Θ̄21 ≡ Θϵ̄
21. Now, define:

K(ϵ) ≡
∫
Θϵ

21

(u(θ, y1)− u(θ, y2))f(θ)dθ +

∫
Θ21

u(θ, y2)f(θ)dθ.

Clearly, this function is continuous in ϵ. By Proposition 3:

U− = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y2)|Θ12]Pr(Θ12)

+E[u(θ, y1)|Θ̄21]Pr(Θ̄21) + E[u(θ, y2)|Θ21\Θ̄21]Pr(Θ21\Θ̄21)

= E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y2)|Θ12]Pr(Θ12) +K(ϵ̄).

Step 2: Characterization of the threshold.

Now, we show that there exists Û ∈ (U−, U+) such that Û is supported as ex ante expected utility

of the receiver in both equilibrium (σ̂12, µ̂12; P̂12) with X̂12 ⊆ Θ12 and equilibrium (σ̂21, µ̂21; P̂21)

with X̂21 ⊆ Θ21.

First, we construct equilibrium (σ̂21, µ̂21; P̂21) with X̂21 ⊆ Θ21. Define:

Û ≡ E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22)

+E[u(θ, y2)|Θ12]Pr(Θ12) + E[u(θ, y2)|Θ21]Pr(Θ21).

The construction of equilibrium (σ̂21, µ̂21; P̂21) is as follows:

σ̂21(θ) =

 {θ} if θ ∈ Θ11 ∪Θ21 ∪Θ0

Θ22 ∪Θ12 if θ ∈ Θ22 ∪Θ12

(29)

Note that:

µ̂21(σ̂21(θ)) =


y1 if θ ∈ Θ11

y2 if θ ∈ Θ22 ∪Θ12 ∪Θ21

yR(θ) if θ ∈ Θ0

(30)
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That is, only types in region Θ21 potentially have an incentive to deviate. However, these types

never deviate by undertaking action y2 as a response to any message containing elements in region

Θ21. Hence, X̂21 = Θ21.

Next, we construct equilibrium (σ̂12, µ̂12; P̂12) with X̂12 ⊆ Θ12. Define function L(δ) by:

L(δ) ≡
∫
(Θ12\Θδ

12)∪Θ21

(u(θ, y1)− u(θ, y2))f(θ)dθ.

Note that L(·) is continuous in δ and L(θ+21) < 0. In addition, because E[u(θ, y1)|Θ12 ∪ Θ21] ≥

E[u(θ, y2)|Θ12 ∪ Θ21] and Pr(Θ12 ∪ Θ21) > 0, L(θ−21) ≥ 0. Then, from the intermediate value

theorem, there exists δ̂ ∈ [θ−21, θ
+
21) such that L(δ̂) = 0. That is, E[u(θ, y1)|(Θ12\Θδ̂

12) ∪ Θ21] =

E[u(θ, y2)|(Θ12\Θδ̂
12) ∪Θ21]. The construction of equilibrium (σ̂12, µ̂12; P̂12) is as follows:

σ̂12(θ) =


{θ} if θ ∈ Θ11 ∪Θ0

(Θ12\Θδ̂
12) ∪Θ21 if θ ∈ (Θ12\Θδ̂

12) ∪Θ21

Θ22 ∪Θδ̂
12 if θ ∈ Θ22 ∪Θδ̂

12

(31)

Note that:

• µ̂12((Θ12\Θδ̂
12)∪Θ21) = y1 because E[u(θ, y1)|(Θ12\Θδ̂

12)∪Θ21] = E[u(θ, y2)|(Θ12\Θδ̂
12)∪Θ21];

• µ̂12(Θ22 ∪ Θδ̂
12) = y2; E[u(θ, y1)|Θ22 ∪ Θδ̂

12] < E[u(θ, y2)|Θ22 ∪ Θδ̂
12] should hold because

E[u(θ, y1)|Θ22 ∪Θ12] ≤ E[u(θ, y2)|Θ22 ∪Θ12] and Θδ̂
12 ⊂ Θ12.

That is, only types in subset Θ12\Θδ′
12 potentially have an incentive to deviate. However, these

types never deviate by undertaking action y1 as a response to any message containing elements in
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region Θ12\Θδ̂
12. Hence, X̂12 = Θ12\Θδ̂

12. Furthermore:

E[u(θ, µ̂12(σ̂12(θ)))] = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22)

+E[u(θ, y2)|Θδ̂
12]Pr(Θδ̂

12)

+E[u(θ, y1)|(Θ12\Θδ̂
12) ∪Θ21]Pr((Θ12\Θδ̂

12) ∪Θ21)

= E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22)

+E[u(θ, y2)|Θδ̂
12]Pr(Θδ̂

12)

+E[u(θ, y2)|(Θ12\Θδ̂
12) ∪Θ21]Pr((Θ12\Θδ̂

12) ∪Θ21)

= E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22)

+E[u(θ, y2)|Θ12 ∪Θ21]Pr(Θ12 ∪Θ21)

= Û .

Step 3: Construction of an equilibrium supporting U ∈ [U−, Û ].

Fix U ∈ [U−, Û ] arbitrarily. Because of the continuity of function K(ϵ) in ϵ, by the intermediate

value theorem, there exists ϵU ∈ [θ−21, ϵ̄] such that:

U = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y2)|Θ12]Pr(Θ12) +K(ϵU )

= E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y2)|Θ12]Pr(Θ12)

+E[u(θ, y1)|ΘϵU
21 ]Pr(ΘϵU

21 ) + E[u(θ, y2)|Θ21\ΘϵU
21 ]Pr(Θ21\ΘϵU

21 ).

U is supported by the following equilibrium (σU , µU ;PU ):

σU (θ) =


Θ11 ∪ΘϵU

21 if θ ∈ Θ11 ∪ΘϵU
21

Θ22 ∪Θ12 if θ ∈ Θ22 ∪Θ12

{θ} if θ ∈ (Θ21\ΘϵU
21 ) ∪Θ0

(32)

Note that:

• µU (Θ11 ∪ΘϵU
21 ) = y1; E[u(θ, y1)|Θ11 ∪ΘϵU

21 ] ≥ E[u(θ, y2)|Θ11 ∪ΘϵU
21 ] holds because ΘϵU

21 ⊆ Θ̄21

and E[u(θ, y1)|Θ11 ∪ Θ̄21] = E[u(θ, y2)|Θ11 ∪ Θ̄21];

• µU (Θ22 ∪Θ12) = y2 because E[u(θ, y1)|Θ22 ∪Θ12] ≤ E[u(θ, y2)|Θ22 ∪Θ12].

Hence, only types in subset Θ21\ΘϵU
21 potentially have an incentive to deviate. However, these types

29



never deviate by undertaking action y2 as a response to any message containing elements in region

Θ21\ΘϵU
21 . Thus, equilibrium (σU , µU ;PU ) supports receiver’s ex ante expected utility U .

Step 4: Construction of an equilibrium supporting U ∈ [Û , U+].

Fix U ∈ [Û , U+] arbitrarily. Because of the continuity of function H(δ) in δ, by the intermediate

value theorem, there exists δU ∈ [θ−12, δ̂] such that:

U = E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|Θ21]Pr(Θ21) +H(δU )

= E[u(θ, y1)|Θ11]Pr(Θ11) + E[u(θ, y2)|Θ22]Pr(Θ22) + E[u(θ, y1)|Θ21]Pr(Θ21)

+E[u(θ, y2)|ΘδU
12 ]Pr(ΘδU

12 ) + E[u(θ, y1)|(Θ12\ΘδU
12 )]Pr(Θ12\ΘδU

12 ).

U is supported by the following equilibrium (σU , µU ;PU ):

σU (θ) =


{θ} if θ ∈ Θ11 ∪Θ0

Θ22 ∪ΘδU
12 if θ ∈ Θ22 ∪ΘδU

12

(Θ12\ΘδU
12 ) ∪Θ21 if θ ∈ (Θ12\ΘδU

12 ) ∪Θ21

(33)

Note that:

• µU (Θ22 ∪ΘδU
12 ) = y2; E[u(θ, y1)|Θ22 ∪ΘδU

12 ] ≤ E[u(θ, y2)|Θ22 ∪ΘδU
12 ] holds because ΘδU

12 ⊆ Θ12

and E[u(θ, y1)|Θ22 ∪Θ12] ≤ E[u(θ, y2)|Θ22 ∪Θ12];

• µU ((Θ12\ΘδU
12 )∪Θ21) = y1; E[u(θ, y1)|(Θ12\ΘδU

12 )∪Θ21] ≥ E[u(θ, y2)|(Θ12\ΘδU
12 )∪Θ21] should

hold because (Θ12\Θδ̂
12) ⊆ (Θ12\ΘδU

12 ) and E[u(θ, y1)|(Θ12\Θδ̂
12)∪Θ21] = E[u(θ, y2)|(Θ12\Θδ̂

12)∪

Θ21].

Hence, only types in subset Θ12\ΘδU
12 potentially have an incentive to deviate. However, these types

never deviate by undertaking action y1 as a response to any message containing elements in region

Θ12\ΘδU
12 . Thus, equilibrium (σU , µU ;PU ) supports receiver’s ex ante expected utility U .

Case (4). There are two cases to be considered.

Case (4)-1: E[u(θ, y1)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)] ≥ E[u(θ, y2)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)].

The proof in this case is same to that in Case (2) with modification to equilibrium construction.

Hence, we only mention the differences. In the description of equilibrium (σU , µU ;PU ), (28) should
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be modified as follows:

σU (θ) =



Θ11 ∪ Θ̄21 if θ ∈ Θ11 ∪ Θ̄21

Θ22 ∪ΘδU
12 if θ ∈ Θ22 ∪ΘδU

12

(Θ12\ΘδU
12 ) ∪ (Θ21\Θ̄21) if θ ∈ (Θ12\ΘδU

12 ) ∪ (Θ21\Θ̄21)

{θ} if θ ∈ Θ0

(34)

Note that:

• µU (Θ11 ∪ Θ̄21) = y1 because E[u(θ, y1)|Θ11 ∪ Θ̄21] = E[u(θ, y2)|Θ11 ∪ Θ̄21];

• µU (Θ22 ∪ΘδU
12 ) = y2; E[u(θ, y1)|Θ22 ∪ΘδU

12 ] ≤ E[u(θ, y2)|Θ22 ∪ΘδU
12 ] holds because ΘδU

12 ⊆ Θ̄12

and E[u(θ, y1)|Θ22 ∪ Θ̄12] = E[u(θ, y2)|Θ22 ∪ Θ̄12];

• µU ((Θ12\ΘδU
12 )∪(Θ21\Θ̄21)) = y1; E[u(θ, y1)|(Θ12\ΘδU

12 )∪(Θ21\Θ̄21)] ≥ E[u(θ, y2)|(Θ12\ΘδU
12 )∪

(Θ21\Θ̄21)] holds because E[u(θ, y1)|(Θ12\Θ̄12)∪(Θ21\Θ̄21)] ≥ E[u(θ, y2)|(Θ12\Θ̄12)∪(Θ21\Θ̄21)]

and (Θ12\Θ̄12) ⊆ (Θ12\ΘδU
12 ).

Hence, the construction of off-the-equilibrium-path beliefs is the same to that in Case (2).

Case (4)-2: E[u(θ, y1)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)] < E[u(θ, y2)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)].

The proof in this case is same to that in Case (3) with modification. Hence, we mention only the

differences. In the description of equilibrium (σ̂21, µ̂21; P̂21), (29) should be modified as follows:

σ̂21(θ) =


{θ} if θ ∈ Θ11 ∪Θ0

Θ22 ∪ Θ̄12 if θ ∈ Θ22 ∪ Θ̄12

(Θ12\Θ̄12) ∪Θ21 if θ ∈ (Θ12\Θ̄12) ∪Θ21

(35)

Note that:

• µ̂21(Θ22 ∪ Θ̄12) = y2 because E[u(θ, y1)|Θ22 ∪ Θ̄12] = E[u(θ, y2)|Θ22 ∪ Θ̄12];

• µ̂21((Θ12\Θ̄12) ∪ Θ21) = y2; E[u(θ, y1)|(Θ12\Θ̄12) ∪ Θ21] < E[u(θ, y2)|(Θ12\Θ̄12) ∪ Θ21] holds

because (Θ21\Θ̄21) ⊂ Θ21 and E[u(θ, y1)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)] < E[u(θ, y2)|(Θ12\Θ̄12) ∪

(Θ21\Θ̄21)].

That is, only types in region Θ21 potentially have an incentive to deviate. However, these types

never deviate by undertaking action y2 as a response to any message containing elements in region

Θ21.

31



In the description of equilibrium (σ̂12, µ̂12; P̂12), the sender’s strategy (31) is unchanged, but

the receiver’s response is modified as follows:

• µ̂12(Θ22 ∪Θδ̂
12) = y2 because of the following reason:

– E[u(θ, y1)|(Θ12\Θ̄12)∪Θ21] < E[u(θ, y2)|(Θ12\Θ̄12)∪Θ21] holds because E[u(θ, y1)|(Θ12\Θ̄12)∪

(Θ21\Θ̄21)] < E[u(θ, y2)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)] holds;

– Θδ̂
12 ⊂ Θ̄12 should hold because E[u(θ, y1)|(Θ12\Θ̄12)∪Θ21] < E[u(θ, y2)|(Θ12\Θ̄12)∪Θ21]

and E[u(θ, y1)|(Θ12\Θδ̂
12) ∪Θ21] = E[u(θ, y2)|(Θ12\Θδ̂

12) ∪Θ21] holds;

– Θδ̂
12 ⊂ Θ̄12 and E[u(θ, y1)|Θ22 ∪ Θ̄12] = E[u(θ, y2)|Θ22 ∪ Θ̄12] imply that E[u(θ, y1)|Θ22 ∪

Θδ̂
12] < E[u(θ, y2)|Θ22 ∪Θδ̂

12].

• µ̂12((Θ12\Θδ̂
12)∪Θ21) = y1 because E[u(θ, y1)|(Θ12\Θδ̂

12)∪Θ21] = E[u(θ, y2)|(Θ12\Θδ̂
12)∪Θ21].

Hence, the construction of off-the-equilibrium-path beliefs is the same to that in Case (3).

In the description of equilibrium (σU , µU ;PU ) that supports U ∈ [U−, Û ], (32) is modified as

follows:

σU (θ) =



Θ11 ∪ΘϵU
21 if θ ∈ Θ11 ∪ΘϵU

21

Θ22 ∪ Θ̄12 if θ ∈ Θ22 ∪ Θ̄12

(Θ12\Θ̄12) ∪ (Θ21\ΘϵU
21 ) if θ ∈ (Θ12\Θ̄12) ∪ (Θ21\ΘϵU

21 )

{θ} if θ ∈ Θ0

(36)

Note that:

• µU (Θ11 ∪ΘϵU
21 ) = y1; E[u(θ, y1)|Θ11 ∪ΘϵU

21 ] ≥ E[u(θ, y2)|Θ11 ∪ΘϵU
21 ] holds because ΘϵU

21 ⊆ Θ̄21

and E[u(θ, y1)|Θ11 ∪ Θ̄21] = E[u(θ, y2)|Θ11 ∪ Θ̄21];
18

• µU (Θ22 ∪ Θ̄12) = y2 because E[u(θ, y1)|Θ22 ∪ Θ̄12] = E[u(θ, y2)|Θ22 ∪ Θ̄12];

• µU ((Θ12\Θ̄12)∪(Θ21\ΘϵU
21 )) = y2; E[u(θ, y1)|(Θ12\Θ̄12)∪(Θ21\ΘϵU

21 )] < E[u(θ, y2)|(Θ12\Θ̄12)∪

(Θ21\ΘϵU
21 )] holds because (Θ21\Θ̄21) ⊆ (Θ21\ΘϵU

21 ) and E[u(θ, y1)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)] <

E[u(θ, y2)|(Θ12\Θ̄12) ∪ (Θ21\Θ̄21)].

Hence, the construction of off-the-equilibrium-path beliefs is the same to that in Case (3).

In the description of equilibrium (σU , µU ;PU ) that supports U ∈ [Û , U+], the sender’s strategy

(33) is unchanged, but the receiver’s response is modified as follows:

18Note that ϵU ≤ ϵ̄ implies that ΘϵU
21 ⊆ Θϵ̄

21 = Θ̄21.
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• µU (Θ22 ∪ ΘδU
12 ) = y2; E[u(θ, y1)|Θ22 ∪ ΘδU

12 ] < E[u(θ, y2)|Θ22 ∪ ΘδU
12 ] should hold because

ΘδU
12 ⊆ Θδ̂

12 and E[u(θ, y1)|Θ22 ∪Θδ̂
12] < E[u(θ, y2)|Θ22 ∪Θδ̂

12];
19

• µU ((Θ12\ΘδU
12 )∪Θ21) = y1; E[u(θ, y1)|(Θ12\ΘδU

12 )∪Θ21] ≥ E[u(θ, y2)|(Θ12\ΘδU
12 )∪Θ21] should

hold because (Θ12\Θδ̂
12) ⊆ (Θ12\ΘδU

12 ) and E[u(θ, y1)|(Θ12\Θδ̂
12)∪Θ21] = E[u(θ, y2)|(Θ12\Θδ̂

12)∪

Θ21].

Hence, the construction of off-the-equilibrium-path beliefs is the same to that in Case (3). Therefore,

the sufficiency is proven. ■

Proof of Corollary 1

Suppose that there exists the full disclosure equilibrium. It is easily shown that the necessary and

sufficient condition for the existence of the full disclosure equilibrium is either region Θ12 = ∅ or

region Θ21 = ∅. Hence, without loss of generality, we assume that Θ21 = ∅. Note that because

the proof of Theorem 1 does not depend on the property that Pr(Θ21) > 0, it is sufficient to

show that the most and the least informative equilibria in this environment are also characterized

by the propositions in the body of the paper. It is obvious that the equilibrium characterized in

Proposition 2 is one of the full disclosure equilibria; that is, the most informative equilibrium is

specified by Proposition 2. The characterization of the least informative equilibrium in Proposition

3 is also not affected by this modification.

Next, suppose that there exists the full pooling equilibrium denoted by (σP , µP ;PP ). By Lemma

1, either region Θ11 = ∅ or region Θ22 = ∅ should hold. Without loss of generality, assume that

region Θ22 = ∅. Note that it is also necessary that µP (Θ) = y1; otherwise, types in agreement

region Θ11 deviate to disclosure messages. Again, because the proof of Theorem 1 does not depend

on the property that Pr.(Θ22) > 0, it is sufficient to show that the most and the least informative

equilibria are characterized by the propositions in the body of the paper. Note that the most

informative equilibrium is characterized by Proposition 2 because that proof does not depend on

the property that Pr(Θ22) > 0.

In this environment, the least informative equilibrium is the full pooling equilibrium, and the

informativeness of this equilibrium is equivalent to that specified in the propositions. There are the

following two cases to be considered. Note that E[u(θ, µP (σP (θ)))] = E[u(θ, y1)].

Case 1: E[u(θ, y1)|Θ11 ∪Θ21] ≥ E[u(θ, y2)|Θ11 ∪Θ21].

19Note that δU ≤ δ̂ implies that ΘδU
12 ⊆ Θδ̂

12.
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Consider equilibrium (σ−, µ−;P−) specified by (4). Because Θ22 = ∅, Θ̄12 = ∅. Hence, the ex ante

expected utility in equilibrium (σ−, µ−;P−) is:

U− = E[u(θ, y1)|Θ11 ∪Θ21]Pr(Θ11 ∪Θ21) + E[u(θ, y1)|Θ12]Pr(Θ12)

= E[u(θ, µP (σP (θ)))].

That is, equilibria (σP , µP ;PP ) and (σ−, µ−;P−) have the same informativeness.

Case 2: E[u(θ, y1)|Θ11 ∪Θ21] < E[u(θ, y2)|Θ11 ∪Θ21].

Consider equilibrium (σ−, µ−;P−) specified by (6). Again, Θ̄12 = ∅ because Θ22 = ∅.

Claim 8 E[u(θ, y1)|Θ12 ∪ (Θ21\Θ̄21)] ≥ E[u(θ, y2)|Θ12 ∪ (Θ21\Θ̄21)].

Proof of Claim 8. Suppose, in contrast, that:

E[u(θ, y1)|Θ12 ∪ (Θ21\Θ̄21)] < E[u(θ, y2)|Θ12 ∪ (Θ21\Θ̄21)]. (37)

By definition of region Θ̄21:

E[u(θ, y1)|Θ11 ∪ Θ̄21] = E[u(θ, y2)|Θ11 ∪ Θ̄21]. (38)

Multiplying the both sides of (37) and (38) by Pr(Θ12∪(Θ21\Θ̄21)) and Pr(Θ11∪Θ̄21), respectively,

and combining the results implies that E[u(θ, y1)] < E[u(θ, y2)], which is a contradiction to that

there exists the full pooling equilibrium. □

By Claim 8, the ex ante expected utility in equilibrium (σ−, µ−;P−) is as follows:

U− = E[u(θ, y1)|Θ11 ∪ Θ̄21]Pr(Θ11 ∪ Θ̄21) + E[u(θ, y1)|Θ12 ∪ (Θ21\Θ̄21)]Pr(Θ12 ∪ (Θ21\Θ̄21))

= E[u(θ, µP (σP (θ)))].

That is, equilibria (σP , µP ;PP ) and (σ−, µ−;P−) have the same informativeness. Therefore, the

least informative equilibrium is characterized by Proposition 3. ■
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Proof of Corollary 2

The model is modified as follows. Let σ : Θ → ∆(M) be the sender’s strategy, and µ : M → ∆(Y )

be the receiver’s strategy. Especially, µ(m) represents the probability that the receiver undertakes

action y1 when she observes message m ∈ M . Except for this modification, the model is identical

to that defined in Section 2. Let R ≡ {θ ∈ Θ|µ(σ(θ)) ∈ (0, 1)} be the set of types where the sender

induces the receiver’s completely mixed response in equilibrium (σ, µ;P). The outline of the proof

is as mentioned in the body of the paper. First, we show useful lemmas.

Lemma 7 For any equilibrium (σ, µ;P) with R ̸= ∅, E[u(θ, y1)|R] = E[u(θ, y2)|R] holds.

Proof of Lemma 7. Let MR ≡ {m ∈ M |µ(m) ∈ (0, 1) and there exists θ ∈ R s.t. m ∈ S(σ(θ))} be

the set of on-the-equilibrium-path messages that induce the receiver’s completely mixed response.

Note that EP(·|m)[u(θ, y1)] = EP(·|m)[u(θ, y2)] for any m ∈ MR because the receiver randomizes

given message m. Without loss of generality, assume that set MR is countable. Then:

E[u(θ, y1)|R] =
∑

m∈MR

Pr(m)EP(·|m)[u(θ, y1)]

=
∑

m∈MR

Pr(m)EP(·|m)[u(θ, y2)]

= E[u(θ, y2)|R].

For the scenario where MR is uncountable can be shown by the similar argument. Therefore,

E[u(θ, y1)|R] = E[u(θ, y2)|R] holds. ■

Lemma 8 Suppose that Assumption 1 holds. Then, for any equilibrium (σ, µ;P) with R ̸= ∅, (i)

(Θ11 ∪Θ22) ∩R = ∅, and (ii) Pr(R) < Pr(Θ12 ∪Θ21).

Proof of Lemma 8. (i) Suppose, in contrast, that there exists an equilibrium (σ, µ;P) with R ̸= ∅

such that (Θ11∪Θ22)∩R ̸= ∅. However, by Lemma 1, type θ ∈ (Θ11∪Θ22)∩R deviates to message

{θ}, which is a contradiction.

(ii) Suppose, in contrast, that there exists an equilibrium (σ, µ;P) withR ̸= ∅ such that Pr(R) ≥

Pr(Θ12∪Θ21). By the first half of this lemma, R ⊆ Θ12∪Θ21∪Θ0. That is, Pr(R) = Pr(Θ12∪Θ21)

should hold. That is, almost every type in region Θ12 is pooling with some types in region Θ21

with inducing receiver’s completely mixed response, and so is almost every type in region Θ21. By

Lemma 7, E[u(θ, y1)|R] = E[u(θ, y2)|R] must hold. However, because Pr(R) = Pr(Θ12 ∪ Θ21),

E[u(θ, y1)|R] = E[u(θ, y2)|R] implies that E[u(θ, y1)|Θ12 ∪ Θ21] = E[u(θ, y2)|Θ12 ∪ Θ21], which is a
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contradiction to Assumption 1-(i). ■

Proposition 4 Suppose that Assumption 1 holds. Then, for any equilibrium (σ, µ;P) with R ̸= ∅,

E[u(θ, µ+(σ+(θ)))] ≥ E[u(θ, µ(σ(θ)))] holds.

Proof of Proposition 4. Without less of generality, assume that E[u(θ, y1)|Θ12∪Θ21] > E[u(θ, y2)|Θ12∪

Θ21]. Suppose, in contrast, that there exists an equilibrium (σ, µ;P) with R ̸= ∅ such that:

E[u(θ, µ+(σ+(θ)))] < E[u(θ, µ(σ(θ)))]. (39)

By Lemmas 1, 7, 8, and Proposition 2, (39) is equivalent to:

E[u(θ, µ(σ(θ)))|(Θ12 ∪Θ21) ∩Rc] > E[u(θ, y1)|(Θ12 ∪Θ21) ∩Rc], (40)

where Rc ≡ Θ\R is the set of types where µ(σ(θ)) is deterministic.

Claim 9 Both Θ12 ∩Rc ̸= ∅ and Θ21 ∩Rc ̸= ∅ hold.

Proof of Claim 9. Suppose, in contrast, that either Θ12 ∩ Rc = ∅ or Θ21 ∩ Rc = ∅. Suppose that

Θ12 ∩Rc = ∅, and then Θ12 ⊂ R. Hence, by the similar argument in Lemma 7, it should hold that:

E[u(θ, y1)|Θ12 ∪ (Θ21 ∩R)] = E[u(θ, y2)|Θ12 ∪ (Θ21 ∩R)]. (41)

By Lemma 8, Pr((Θ21 ∩ R)) < Pr(Θ21). Then, because u(θ, y1) < y(θ, y2) for any θ ∈ Θ21, (41)

implies that E[u(θ, y1)|Θ12∪Θ21] < E[u(θ, y2)|Θ12∪Θ21], which is a contradiction to the assumption

that E[u(θ, y1)|Θ12 ∪Θ21] > E[u(θ, y2)|Θ12 ∪Θ21].

Next, suppose that Θ21∩Rc = ∅. That is, (Θ12∪Θ21)∩Rc ⊆ Θ12. However, because u(θ, y1) >

u(θ, y2) for any θ ∈ (Θ12∪Θ21)∩Rc, E[u(θ, µ(σ(θ)))|(Θ12∪Θ21)∩Rc] ≤ E[u(θ, y1)|(Θ12∪Θ21)∩Rc]

should hold, which is a contradiction to (40). Therefore, both Θ12 ∩Rc ̸= ∅ and Θ21 ∩Rc ̸= ∅ hold.

□

Because of Claim 9, we can derive a contradiction by the similar argument in the proof of

Proposition 2 starting from Claim 1 where regions Θ12 and Θ21 are replaced by regions Θ12 ∩ Rc

and Θ21 ∩Rc, respectively.20 Therefore, E[u(θ, µ+(σ+(θ)))] ≥ E[u(θ, µ(σ(θ)))] holds. ■

20The complete proof is in the Supplementary Appendix.
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Proposition 5 Suppose that Assumption 1 holds. Then, for any equilibrium (σ, µ;P) with R ̸= ∅,

E[u(θ, µ−(σ−(θ)))] ≤ E[u(θ, µ(σ(θ)))] holds.

Proof of Proposition 5. Suppose, in contrast, that there exists equilibrium (σ, µ;P) with R ̸= ∅

such that:

E[u(θ, µ−(σ−(θ)))] > E[u(θ, µ(σ(θ)))]. (42)

Because of Assumption 1, it is sufficient to consider Cases (1) to (3).

Case (1). It is obvious that equilibrium (σ−, µ−;P−) attains the minimum even if mixed strategies

are allowed because the first-best action yR(θ) is never induced over the disagreement region in

equilibrium (σ−, µ−;P−), which is a contradiction to (42).

Case (2). We consider the following new equilibrium (σ̃, µ̃; P̃) such that:

σ̃(θ) =


Θ11 ∪Θ21 if θ ∈ Θ11 ∪Θ21

Θ22 ∪ Θ̃12 if θ ∈ Θ22 ∪ Θ̃12

{θ} if θ ∈ (Θ12\Θ̃12) ∪Θ0,

(43)

where Θ̃12 is a subset of disagreement region Θ12 such that (i) E[u(θ, y1)|Θ22∪Θ̃12] = E[u(θ, y2)|Θ22∪

Θ̃12], and (ii) if Θ̃12 ∩ R ̸= ∅, then (Θ12 ∩ Rc) ⊆ Θ̃12. That is, by Claim 6, E[u(θ, µ̃(σ̃(θ)))] =

E[u(θ, µ−(σ−(θ)))] = U−, and region Θ̃12 is constructed by types in region Θ12 ∩ Rc as much as

possible. Then, we compare equilibria (σ̃, µ̃; P̃) and (σ, µ;P). That is, (42) is equivalent to:

E[u(θ, µ̃(σ̃(θ)))|Rc]Pr(Rc) + E[u(θ, µ̃(σ̃(θ)))|R]Pr.(R)

> E[u(θ, µ(σ(θ)))|Rc]Pr(Rc) + E[u(θ, µ(σ(θ)))|R]Pr.(R). (44)

First, compare these equilibria over region Rc where the receiver’s response is deterministic in

equilibrium (σ, µ;P). Note that equilibrium (σ̃, µ̃; P̃) attains the minimum ex ante expected utility

conditional on region Rc because of Proposition 3 and the construction of equilibrium (σ̃, µ̃; P̃):

E[u(θ, µ̃(σ̃(θ)))|Rc] ≤ E[u(θ, µ(σ(θ)))|Rc].
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Hence, to hold (44), it is necessary that:

E[u(θ, µ̃(σ̃(θ)))|R]Pr(R) > E[u(θ, µ(σ(θ)))|R]Pr(R). (45)

Note that:

E[u(θ, µ̃(σ̃(θ)))|R]Pr(R) = E[u(θ, y1)|(Θ12\Θ̃12) ∩R]Pr((Θ12\Θ̃12) ∩R)

+E[u(θ, y2)|Θ̃12 ∩R]Pr(Θ̃12 ∩R) (46)

+E[u(θ, y1)|Θ21 ∩R]Pr(Θ21 ∩R).

For any m ∈ MR, EP(·|m)[u(θ, µ(σ(θ)))] = EP(·|m)[u(θ, y1)]. Hence, by the similar argument in

Lemma 7, we can say that E[u(θ, µ(σ(θ)))|R] = E[u(θ, y1)|R]. That is:

E[u(θ, µ(σ(θ)))|R]Pr(R) = E[u(θ, y1)|(Θ12\Θ̃12) ∩R]Pr((Θ12\Θ̃12) ∩R)

+E[u(θ, y1)|Θ̃12 ∩R]Pr(Θ̃12 ∩R) (47)

+E[u(θ, y1)|Θ21 ∩R]Pr(Θ21 ∩R).

Then, (46) and (47) implies that (45) is equivalent to:

E[u(θ, y2)|Θ̃12 ∩R]Pr(Θ̃12 ∩R) > E[u(θ, y1)|Θ̃12 ∩R]Pr(Θ̃12 ∩R). (48)

However, because u(θ, y1) > u(θ, y2) for any θ ∈ Θ̃12 ∩ R, (48) is impossible, which is a contradic-

tion.

Case (3). We can derive a contradiction by the analogy of Case (2).

Therefore, there exists no equilibrium (σ, µ;P) with R ̸= ∅ being dominated by equilibrium

(σ−, µ−;P−). ■

Proof of Corollary 2. By Propositions 4 and 5, without loss of generality, we can restrict our atten-

tion to the ceases where the receiver adopts pure strategies. Furthermore, as long as the receiver

adopts pure strategies, the proofs of Propositions 2 and 3 do not depend on whether the sender

adopts pure strategies. In other words, the characterizations of the most and the least informative

equilibria do not change even if the players adopt mixed strategies. Again, because the proof of
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Theorem 1 does not depend on whether the players adopt pure strategies, the theorem is still valid

even if mixed strategies are allowed. ■
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