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1 Introduction

In our main article, Miura and Yamashita (2014) (“On the possibility of

information transmission”), we have shown in a cheap-talk environment that

“assuming full revelation in a common-knowledge environment” implies a

very different conclusion for models with slight misspecification in the sense

of the topology of convergence in probability.

In this note, we obtain a similar no-prediction result in another example.

The example is about a costly signaling environment (Spence (1973)). That

is, the main difference from the cheap-talk case is that the sender’s message

is costly.

2 Model

A sender is a job-market candidate, whose ability θ ∈ Θ = R++ is his private

information. He chooses an effort level e ∈ E = R+, as a (costly) message

∗Department of Economics, Kanagawa University, smiura@kanagawa-u.ac.jp
†Toulouse School of Economics, takuro.yamashita@tse-fr.eu

1



for his ability, which costs e2

2θ
to him.1 The sender’s utility is w + de − e2

2θ
,

where w ∈ W = R+ is the wage paid by the employer, and d ∈ Dε = [−ε, ε]

represents an additional incentive for effort (e.g., human capital not directly

relevant to production). In the benchmark case, d = 0 is common knowledge.

A receiver is a potential employer who offers the wage w(e) ∈ R+ after

she observes the effort level e chosen by the sender. We assume w(0) = 0

for normalization, and this essentially serves as the sender’s outside option.

For e > 0, the receiver offers the competitive wage level, i.e., w(e) equals the

expected value of θ given the observed effort choice e.2 The prior over θ is

assumed to be common knowledge throughout the analysis.

3 A benchmark case: d = 0 being common

knowledge

First, we consider a benchmark case where d = 0 is common knowledge

among the players. As in the standard approach in the literature, we assume

that the players play a fully-revealing perfect-Bayesian equilibrium, i.e., the

sender’s effort in state θ is given by e(θ) and the receiver’s wage offer given

each e is given by w(e) such that e and w are injective. By the result of

Mailath and von Thadden (2013) (Theorem 2.1), the fully-revealing strategy

e(·) should be differentiable on Θ.

In the next section, we study the implication of this assumption on the

equilibrium behaviors when the model is slightly misspecified in the sense

of the topology of convergence in probability, as in Miura and Yamashita

(2014).

1Following the convention, the sender is treated as male and the receiver as female

throughout the paper.
2We can interpret that this receiver is one of the potential employers who are symmetric

both in the sense of the preferences and beliefs. For example, each potential employer can

earn a net profit of θ by employing the sender, and hence, through a Bertrand competition

among them, the wage equals the expected value of θ conditional on the information

available.
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Lemma 1. A fully-revealing equilibrium exists and unique in the benchmark

environment. More specifically, the sender’s effort in each state θ ∈ Θ is

given by e(θ) = θ and the receiver’s wage offer given each e ∈ E is given by

w(e) = e.

Proof. We first show that the strategy profile in the statement comprises a

perfect Bayesian equilibrium. Because w(e) = E(θ|e), it suffices to show that

e(θ) = θ maximizes the sender’s expected utility given the wage function.

Indeed, the sender’s utility in state θ is

e− e2

2θ
,

which is maximized at e = θ.

We now show its uniqueness within the class of fully-revealing equilibria.

First, because w(e) − e2

2θ
has an increasing difference in (e, θ), e(θ) is non-

decreasing. Therefore, full revelation necessarily implies that e(θ) is strictly

increasing.

Because the set of effort levels, E, is an open set, the optimal effort choice

given any θ satisfies the first-order condition: w′(e) = e
θ
. Let θ∗(e) = e

w′(e)

be the inverse function of the equilibrium choice of effort. Then the wage

satisfies that w(e) = E(θ|e) = θ∗(e) = e
w′(e)

(for any e in the interior of the

interval X = {e(θ)|θ > 0}).
The solution to this differential equation is w(e)2 − e2 = c for some

constant c, or w(e) =
√
e2 + c, for e ∈ intX. Given such a wage schedule, the

first-order condition of the sender’s payoff gives θ2 = e2+c, or e(θ) =
√
θ2 − c.

For this condition to make sense for any θ > 0, we must have c ≤ 0.

Note that the sender’s payoff cannot be negative in any θ; otherwise, he

can profitably deviate to e = 0. For θ− θ2−c
2θ

= θ
2
+ c

2θ
to be nonnegative, we

must have c ≥ 0. Therefore, we obtain c = 0, which implies that w(e)2 = e2

or w(e) = e, and furthermore, e(θ) = θ.
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4 When d is close to zero in the topology of

convergence in probability

We now consider a situation where d ∈ [−ε, ε] is common knowledge, and

obtain a qualitatively similar no-prediction result as in Miura and Yamashita

(2014). Specifically, we consider the same Harsanyi’s type space T = (T1, T2, b1, b2)

as in Miura and Yamashita (2014). We describe T for the completeness. In

the following, for each type of the sender, t1 ∈ T1, we denote by d(t1) ∈ Dε

and θ(t1) ∈ Θ denote what t1 knows about the parameter d and the state

θ, and we denote by bi : Ti → ∆(T−i) the belief of player i about the other

player’s type.

First, define T 0
i for each i as follows. Let T 0

1 = {t01(θ)|θ ∈ Θ} be a subset

of types of the sender which we refer to as “level-0” types, where for each θ,

t01(θ) is a type of the sender who (i) has d = 0, (ii) knows the state θ, and

(iii) believes that the receiver’s type is in T 0
2 , i.e.,

d(t01(θ)) = 0, θ(t01(θ)) = θ, and b1(T
0
2 |t01(θ)) = 1.

Let T 0
2 = {t02}, where t02 is a “level-0” type of the receiver who believes

that the sender’s type is in T 0
1 (i.e., b2(T

0
1 |t02) = 1).

Note that d = 0 is commonly believed among them. Therefore, we will

assume a fully-revealing and differentiable equilibrium plays for them.

Next, for each d ∈ Dε, let T
1
1 (d) = {t11(d, θ)|θ ∈ Θ} be another subset of

types of the sender (“level-1” types), where for each θ, t11(d, θ) is a type of

the sender who (i) has d, (ii) knows the state θ, and (iii) believes that the

receiver’s type is t02 for certain, i.e.,

d(t11(d, θ)) = d, θ(t11(d, θ)) = θ, and b1(T
0
2 |t11(θ)) = 1.

Let T 1
1 =

∪
d∈Dε

T 1
1 (d).

Let T 1
2 = {t12(d)|d ∈ Dε} be a set of “level-1” types of the receiver,

where for each d ∈ Dε, t
1
2(d) believes that the sender’s type is in T 1

1 (d) (i.e.,

b2(T
1
1 (d)|t12(d)) = 1).
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Inductively, given T k
2 for each k = 1, 2, . . ., let T k+1

1 be another subset of

the sender’s types (“level-(k + 1)” types)as follows. First, for each d ∈ Dε

and t2 ∈ T k
2 , let T

k+1
1 (d, t2) be such that T k+1

1 (d, t2) = {tk+1
1 (d, θ, t2)|θ ∈ Θ},

where for each θ, tk+1
1 (d, θ, t2) is a type of the sender who (i) has the bias

d, (ii) knows the state θ, and (iii) believes that the receiver’s type is t2 for

certain, i.e.,

d(tk+1
1 (d, θ, t2)) = d, θ(tk+1

1 (d, θ, t2)) = θ, and b1(T
k
2 |tk+1

1 (θ)) = 1.

Let T k+1
1 =

∪
d∈Dε,t2∈Tk

2
T k+1
1 (d, t2).

Similarly, let T k+1
2 be another subset of the receiver’s types (“level-(k+1)”

types) as follows. We let T k+1
2 = {tk+1

2 (d, t2)|d ∈ Dε, t2 ∈ T k
2 }, where, for

each d ∈ Dε and t2 ∈ T k
2 , t

k+1
2 (d, t2) believes that the sender’s type is in

T k+1
1 (d, t2) (i.e., b2(T

k+1
1 (d, t2)|tk+1

2 (d, t2)) = 1).

We complete the description of the type space by defining Ti =
∪∞

k=0 T
k
i

for each i. One interpretation may be that type 0 is the “naive” type who

believes that there is no conflict in their preferences. A type of the sender in

T k
1 tries to best respond to a type of the receiver in T k−1

2 , and a type of the

receiver in T k
2 tries to best respond to a type of the sender in T k

1 .

Let σ1 : T1 → E denote the sender’s (pure) effort choice, and σ2 : T2 ×
E → W denote the receiver’s (pure) wage offer. Let σ∗ = (σ∗

1, σ
∗
2) denote a

perfect Bayesian equilibrium in the game. Let E∗(θ),W ∗(θ) denote the set

of equilibrium efforts and wages that can occur in state θ, i.e.,

E∗(θ) =
{
σ∗
1(t1)

∣∣ t1 ∈ T1 s.t. d(t1) ∈ Dε, θ(t1) = θ
}
.

W ∗(θ) =
{
σ∗
2

(
t2|σ∗

1(t1)
) ∣∣ (t1, t2) ∈ T s.t. d(t1) ∈ Dε, θ(t1) = θ

}
.

We say that a perfect Bayesian equilibrium given type space T satisfies

Property FRD0 if, in any belief-closed subset where d = 0 is commonly

believed, the sender’s effort is θ given any θ and the receiver’s wage offer is

e given any e.

Theorem 1. In any equilibrium with Property FRD0, for any θ ∈ Θ, we

have E∗(θ) = E and W ∗(θ) = W .
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Proof. Let e0(θ) = θ and w0(e) = e.

First, consider the sender with a “level-1” type who knows d. His payoff

is

e+ de− e2

2θ
.

Because he believes that the receiver has the “level-0” type, he chooses

e1(θ) = (1 + d)θ ∈ [(1− ε)θ, (1 + ε)θ] = [z1θ, z1θ],

where z1 = 1− ε and z1 = 1 + ε.

Believing that the sender is one of such “level-1” types, the receiver offers

the wage

w1(e) =
e

1 + d
∈ [

e

z1
,
e

z1
].

Now, for the sender who knows d and believes that the receiver is one of

those “level-1” types, his payoff is

e

1 + d′
+ de− e2

2θ
.

Thus, he chooses

e2(θ) = (
1

1 + d′
+ d)θ ∈ [(

1

1 + ε
− ε)θ, (

1

1− ε
+ ε)θ] = [z2θ, z2θ],

where z2 =
1

1+ε
− ε and z2 =

1
1−ε

+ ε.

Believing that the sender is one of such “level-2” types, the receiver offers

the wage

w2(e) =
e

1
1+d′

+ d
∈ [

e
1

1−ε
+ ε

,
e

1
1+ε

− ε
] = [

e

z2
,
e

z2
].

By induction, suppose that, for some 0 < zk < zk, we have

ek(θ) ∈ [zkθ, zkθ],
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and

wk(e) ∈ [
e

zk
,
e

zk
].

Then, for the sender who knows d and believes that the receiver is one of

the “level-k” types, his payoff is

e

zk
+ de− e2

2θ
,

for some zk ∈ [zk, zk]. Thus, he chooses

ek+1(θ) = (
1

zk
+ d)θ ∈ [zk+1θ, zk+1θ],

where zk+1 =
1
zk

− ε and zk+1 =
1
zk

+ ε.

Believing that the sender is one of such “level-(k+1)” types, the receiver

offers the wage

wk+1(e) ∈ [
e

zk+1

,
e

zk+1

].

We can continue this argument unless zk+1 ≤ 0 or zk+1 ≤ 0. Let k∗ be

the first integer such that zk∗ ≤ 0 or zk∗ ≤ 0 holds. (let k∗ = ∞ if no such

integer exists, although we show that such k∗ exists).

Lemma 2. For each k < k∗, we have zk < zk+1, zk > zk+1, zk ≥ (1 + ε)k,

and zk ≤ (1− ε)k.

Proof. The monotonicity of zk, zk is obvious from the definition, so we omit

it.

The rest of the proof is by induction.3 For k = 1, z1 = 1+ε and z1 = 1−ε,

and hence the claim is satisfied.

Fix k < k∗. Suppose that, up to k − 1, we have the desired inequalities.

Then for k,

zk =
1

zk−1

+ ε

≥ 1

(1− ε)k−1
+ ε,

3We thank Mamiko Yamashita for her suggestion of the proof idea.
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and therefore,

zk − (1 + ε)k ≥ 1

(1− ε)k−1
+ ε− (1 + ε)k

=
1

(1− ε)k
[1− ε+ ε(1− ε)k − (1− ε2)k]

=
1

(1− ε)k
[1− (1− ε2)k − ε(1− (1− ε)k)],

where, because ak − bk = (a − b)(ak−1 + ak−2b + . . . + abk−2 + bk−1) for any

real numbers a, b, we have

1− (1− ε2)k = ε2[1 + (1− ε2) + (1− ε2)2 + . . .+ (1− ε2)k−1],

1− (1− ε)k = ε[1 + (1− ε) + (1− ε)2 + . . .+ (1− ε)k−1],

and thus, 1− (1− ε2)k ≥ ε(1− (1− ε)k). Therefore, zk − (1 + ε)k ≥ 0.

Similarly,

zk =
1

zk−1

− ε

≤ 1

(1 + ε)k−1
− ε,

and therefore,

zk − (1− ε)k ≤ 1

(1 + ε)k−1
− ε− (1− ε)k

=
1

(1 + ε)k
[1 + ε− ε(1 + ε)k − (1− ε2)k]

=
1

(1 + ε)k
[1− (1− ε2)k − ε((1 + ε)k − 1)]

=
ε2

(1 + ε)k
[(1 + (1− ε2) + . . .+ (1− ε2)k−1)− (1 + (1 + ε) + . . .+ (1 + ε)k−1)]

≤ 0.

Because zk = 1
zk−1

− ε and zk−1 is divergent, there is an integer k∗ such

that zk ≤ 0 for all k ≥ k∗.
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In the following, we assume that, at k∗, we exactly have zk∗ = 0. A

similar argument holds true for the other case with zk∗ < 0.4

If zk∗ = 0, then it means that, for any θ > 0 and e ∈ (0, θ], there exists

a “level-k” type of the sender with k ≤ k∗ such that his ability is θ and he

plays e. Therefore, in state θ, any effort below θ is played by some type of

the sender.

At level k∗ + 1, we have zk∗+1 = ∞. Therefore, for any θ > 0 and any

e > θ, there exists a “level-k type of the sender with k ≤ k∗ + 1 such that

his ability is θ and he plays e. Therefore, any effort above θ is also possible.

Accordingly, any wage level is also possible for any given θ.

In conclusion, hypothesizing a fully-revealing and differentiable equilib-

rium when d = 0 is common knowledge leads to a similar no-prediction result

as in the cheap-talk case.
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